首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of spermine, bovine serum albumin, and Z protein on microsomal lipid formation from sn-glycerol 3-phosphate and [14C]palmitoyl CoA were investigated. In the presence of these agents, microsomal lipid formation was stimulated. This was attributed to the activation of sn-glycerol 3-phosphate acyltransferase and to the inhibition of palmitoyl CoA hydrolase. In addition to palmitoyl CoA, spermine also reacted with microsomal membranes in causing their aggregation, and ATP reversed the effect of spermine. Further studies indicated that the interaction of spermine with palmitoyl CoA, rather than with microsomal membranes, was responsible for the activation of glycerolipid formation or to the inhibition of palmitoyl CoA reductase. Examination of the intravesicular distribution of sn-glycerol 3-phosphate acyltransferase and palmitoyl CoA hydrolase and the effects of structural integrity of microsomal vesicles on these two membrane-bound enzymes indicated that the activation of glycerolipid formation and the inhibition of palmitoyl CoA hydrolase by spermine, bovine serum albumin, or Z protein may be closely linked with the structural integrity of microsomal vesicles.  相似文献   

2.
The pink portion of the rabbit harderian gland is known to contain a preponderance of ether-linked glycerolipids consisting primarily of 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols and smaller amounts of 1-alkyl-2,3-diacyl-sn-glycerols. In the present study, we have used a combination of chemical, enzymatic, and chromatographic techniques to identify two minor lipid components in the gland as 1-hydroxyalkyl-2-acyl-sn-glycerols and 1-hydroxyalkyl-2,3-diacyl-sn-glycerols. The long-chain acyl groups occurring in the 1-hydroxyalkyl-2-acyl-sn-glycerols and 1-hydroxyalkyl-2,3-diacyl-sn-glycerols are almost exclusively hexadecanoic acid, whereas the 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols have a ratio of hexadecanoic acid to octadecanoic acid of 21. The 1-(O-acyl) hydroxyalkyl-2,3-diacyl-sn-glycerols and the 1-hydroxyalkyl-2,3-diacyl-sn-glycerols also contain a short-chain acyl moiety identified as 3-methylbutanoic acid (isovaleric acid). This acid was found to occupy the 3-position of the glycerol backbone in these lipid classes.Metabolic experiments demonstrate that 3-methylbutanoic acid in the lipids of the gland is derived from the catabolism of l-leucine. Pulse-chase data show a precursor-product relation between the 1-hydroxyalkyl-2,3-diacyl-sn-glycerols and 1-(O-acyl-hydroxyalkyl-2,3-diacyl-sn-glycerols and rule out direct hydroxylation of 1-alkyl-2,3-diacyl-sn-glycerols as a possible biosynthetic route to the 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols.Characterization of the alkyl and acyl groups and the positional distributions of the acyl moieties in combination with the metabolic information indicated the acylation sequence involved in the formation of 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerol is 1-hydroxyalkyl-2-acyl-sn-glycerols → 1-hydroxyalkyl-2,3-diacyl-sn-glycerols → 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols. The data also suggest that hydroxylation of the alkyl side-chain occurs before or at the alkylacylglycerol stage.  相似文献   

3.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252–6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 μmol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.  相似文献   

4.
Lysophospholipid acyltransferases (LPLATs) incorporate a fatty acid into the hydroxyl group of lysophospholipids (LPLs) and are critical for determining the fatty acid composition of phospholipids. Previous studies have focused mainly on their molecular identification and their substrate specificity regarding the polar head groups and acyl-CoAs. However, little is known about the positional specificity of the hydroxyl group of the glycerol backbone (sn-2 or sn-1) at which LPLATs introduce a fatty acid. This is mainly due to the instability of LPLs used as an acceptor, especially for LPLs with a fatty acid at the sn-2 position of the glycerol backbone (sn-2-LPLs), which are essential for the enzymatic assay to determine the positional specificity. In this study, we established a method to determine the positional specificity of LPLAT by preparing stable sn-2-LPLs in combination with PLA2 digestion, and applied the method for determining the positional specificity of several LPLATs including LPCAT1, LYCAT and LPCAT3. We found that LPCAT1 introduced palmitic acid both at the sn-1 and sn-2 positions of palmitoyl-LPC, while LYCAT and LPCAT3 specifically introduced stearic acid at the sn-1 position of LPG and arachidonic acid at the sn-2 position of LPC, respectively. The present method for evaluating the positional specificity could also be used for biochemical characterization of other LPLATs.  相似文献   

5.
Polyunsaturated phospholipids are common in biological membranes and affect the lateral structure of bilayers. We have examined how saturated sphingomyelin (SM; palmitoyl and stearoyl SM (PSM and SSM, respectively)) and phosphatidylcholine (PC; dipalmitoyl PC and 1-palmitoyl-2-stearoyl PC (DPPC and PSPC, respectively)) segregate laterally to form ordered gel phases in increasingly unsaturated PC bilayers (sn-1: 16:0 and sn-2: 18:1...22:6; or sn-1 and sn-2: 18:1…22:6). The formation of gel phases was determined from the lifetime analysis of trans-parinaric acid. Using calorimetry, we also determined gel phase formation by PSM and DPPC in unsaturated PC mixed bilayers. Comparing PSM with DPPC, we observed that PSM formed a gel phase with less order than DPPC at comparable bilayer concentrations. The same was true when SSM was compared with PSPC. Furthermore, we observed that at equal saturated phospholipid concentration, the gel phases formed were less ordered in unsaturated PCs having 16:0 in sn-1, as compared to PCs having unsaturated acyl chains in both sn-1 and sn-2. The gel phases formed by the saturated phospholipids in unsaturated PC bilayers did not appear to achieve properties similar to pure saturated phospholipid bilayers, suggesting that complete lateral phase separation did not occur. Based on scanning calorimetry analysis, the melting of the gel phases formed by PSM and DPPC in unsaturated PC mixed bilayers (at 45 mol % saturated phospholipid) had low cooperativity and hence most likely were of mixed composition, in good agreement with trans-parinaric acid lifetime data. We conclude that both interfacial properties of the saturated phospholipids and their chain length, as well as the presence of 16:0 in sn-1 of the unsaturated PCs and the total number of cis unsaturations and acyl chain length (18 to 22) of the unsaturated PCs, all affected the formation of gel phases enriched in saturated phospholipids, under the conditions used.  相似文献   

6.
A method for the preparation of a fluorescent phosphatidylinositol analogue, 1-acl,-2-prinaroyl-sn-glycero-3-phospho-sn-1-myo-inositol has been developed. This method makes use of yeast phosphatidylinositol as the starting material and includes the following steps: (1) acetylation of the free hydroxyl groups of the inositol moeity; (2) removal of the fatty acid from the sn-2-position of the glycerol moiety by phospholipase A2; (3) reacylation with parimaroyl anhydride; (4) removal of the protecting acetyl groups by alkaline solvolysis. The identity of the product was established by thin-layer chromatography (TLC), UV absorption spectroscopy, enzymatic degradation and by a transfer assay using the phosphatidylinositol transfer protein from bovine brain.Some properties of the fluorescent phosphatidylinositol analogue are reported.  相似文献   

7.
The reaction of 1,2-dipalmitoyl-3-iododeoxy-rac-glycerol with silver dibenzyl phosphate gave 1,2-dipalmitoyl-rac-glycerol-3-(dibenzyl phosphate) as the major product, contamined with ca. 2.0% of 1,3-dipalmitoyl-rac-glycerol-2-(dibenzyl phosphate). This contamination is acceptable in most preparations; in particular it cannot account for the low optical rotation values which have been recorded in the literature for sn-glycerol-3-phosphates prepared from sn-3-iododeoxy derivatives. The reaction thus remains a valuable key step in the total synthesis of rac- and sn-glycero-3-phosphoric acid esters. Factors controlling regioselectivity in such reactions are discussed.  相似文献   

8.
In vivo oxidation of glycerophospholipid generates a variety of products including truncated oxidized phospholipids (tOx-PLs). The fatty acyl chains at the sn-2 position of tOx-PLs are shorter in length than the parent non-oxidized phospholipids and contain a polar functional group(s) at the end. The effect of oxidatively modified sn-2 fatty acyl chain on the physicochemical properties of tOx-PLs aggregates has not been addressed in detail, although there are few reports that modified fatty acyl chain primarily determines the biological activities of tOx-PLs. In this study we have compared the properties of four closely related tOx-PLs which differ only in the type of modified fatty acyl chain present at the sn-2 position: 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC). Aggregates of individual tOx-PL in aqueous solution were characterized by fluorescence spectroscopy, size exclusion chromatography, native polyacrylamide and agarose gel electrophoresis. The data suggest that aggregates of four closely related tOx-PLs form micelle-like particles of considerably different properties. Our result provides first direct evidence that because of the specific chemical composition of the sn-2 fatty acyl chain aggregates of particular tOx-PL possess a distinctive set of physicochemical properties.  相似文献   

9.
The seed oil of Thunbergia alata has an unusual fatty acid composition which consists of more than 80 % 16:1Δ6. This fatty acid is produced in the plastid by the action of a Δ6 palmitoyl (16:0)-ACP desaturase. To examine the biosynthesis of triacylglycerol (TAG) containing high concentrations of this unusual monoenoic fatty acid, endosperm dissected from developing T. alata seeds was labeled with [1-14C]-acetate. At early time points (5–15 min), the predominant labeled lipid was PC whereas at later time points (greater than 30 min) TAG became the major labeled lipid. Analysis of the acyl group composition of each lipid revealed that radiolabeled 16:1Δ6 was highest at early time points in PC while at later time points, it was found to be highest in TAG. Further analysis of the distribution of labeled acyl groups within PC indicated that 16:1Δ6 at the sn-2 position comprised the majority (55–78 %) of total labeled acyl groups whereas 16:1Δ6 at the sn-1 position constituted only a small fraction (12–15 %) of the total labeled acyl groups. In contrast, unlabeled PC contained lower amounts of 16:1Δ6 (16 %) at the sn-2 position. These results are consistent with previous studies suggesting a flux of novel monoenoic acids through PC during TAG biosynthesis, and furthermore imply a stereospecific flux through the sn-2 position of PC.  相似文献   

10.
1. We describe the synthesis of a glucosamine derivative of phosphatidylglycerol having the same structure as that of the natural compound isolated from Bacillus megaterium. 2. 2-O-(3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido-d-glucopyranosyl)-3-O-benzyl-1-iodo-sn-glycerol was prepared by a Königs–Knorr condensation between 3-O-benzyl-1-toluene-p-sulphonyl-sn-glycerol and 3,4,6-tri-O-acetyl-1-bromo-2-deoxy-2-phthalimido-d-glucopyranose followed by replacement of the toluene-p-sulphonyl group with iodine. The iodide was treated with the silver salt of 2-isolauroyl-1-oleoyl-sn-glycerol 3-(monobenzyl hydrogen phosphate) to form the fully protected phosphoglycolipid. 3. Removal of benzyl protecting groups by catalytic hydrogenolysis, phthaloyl group with hydrazine and acetyl groups with pH10 buffer furnished 2-O-(2-amino-2-deoxy-d-glucopyranosyl)-1-(2-isolauroyl-1-stearoyl-sn-glycero-3-phosphoryl)-sn-glycerol. 4. The synthetic and natural compounds appeared identical when compared by chromatography and by identification of hydrolysis products from chemical and enzymic degradations.  相似文献   

11.
The understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB). The interaction of the POPC-SLB and fluorophore-modified POPC-SLB with docosahexaenoic acid, DHA, was evaluated. The incorporation of DHA into the POPC-SLB was observed to significantly decrease in the presence of the Lis-Rhod PE probe compared with the POPC-SLB. In addition, it was observed that the small concentration of DHA incorporated into the POPC:NBD-PC SLB can produce rearrangement processes followed by the lost not only of DHA but also of POPC or NBD-PC molecules or both during the washing step. This work has significant implications for the interpretation of data employing fluorescent reporter molecules within SLBs.  相似文献   

12.
This research was undertaken to study the enzymatic deacylation of l,2-diacyl-sn-glycero-3-phosphocholines (sn-1,2-PC) to sn-glycerol-3-phosphocholine (GPC); this compound could be an useful intermediate in the synthesis of “structured” sn-1,2-PC, after re-acylations of the two sn-positions of the glycerol backbone. The enzymatic reactions represent a valid alternative to the chemical deacylation that can be simply obtained in alkaline conditions. High conversion were achieved using a lipase selective for the sn-1-position of sn-1,2-PC (Lipozyme IM, from Mucor miehei) together with a Phospholipase A2 from hog pancreas, enzyme selective for the sn-2-position; the best results were obtained carrying out the enzymatic reaction in a microemulsion system.  相似文献   

13.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

14.
Abstract— The turnover of phosphoglycerides in subcellular fractions of adult mouse brain was examined after intracerebral injection of [1-14C]oleic acid. Radioactivity of the total brain homogenate decreased rapidly thereafter, with only 4 per cent of the radioactivity remaining at the end of 3 months. The rate of decrease of radioactivity in the subcellular fractions was in the order: cytosol, microsomes, synaptosomes and myelin. Increasing amounts of radioactivity were detected in the alkenyl groups and cerebrosides, but metabolic conversions were not as extensive as found previously with the palmitoyl group. The specific radioactivities for diacyl sn-glycero-3-phosphorylcholine and diacyl sn-glycero-3-phosphorylethanolamine were highest in the microsomal fraction and decreased with time. The apparent half-lives for the diacyl sn-glycero-3-phosphorylcholine and the diacyl sn-glycero-3-phosphorylethanolamine in the microsome and synaptosome-rich fractions were 1-3.5 days when estimated between 1 and 7 days after injection. The rate of decay for the brain membrane phosphoglycerides was not linear with time, probably because of the extensive amount of recycling occurring within the system. Radioactivity was incorporated into the phosphoglycerides of the myelin but equilibration of radioactivity between microsomes and myelin required 7–14 days.  相似文献   

15.
Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglycerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas α-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozonefumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we concluded that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves.  相似文献   

16.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

17.
Syntheses of 1,2-didodecanoyl-sn-glycero-3-phosphoryl-1′-(3′-O-L-lysyl)-sn-glycerol (IV) and 1,2-didodecanoyl-sn-glycero-3-phosphoryl-1′-(2′-O-L-lysyl)-sn-glycerol (VIII) as well as 1,2-didodecanoyl-sn-glycerol-3-phosphoryl-1′-sn-glycerol (XII) are described. 2′- and 3′-lysylphosphatidylglycerol are obtained as pure isomers and can be distinguished spectroscopically (infrared, 100 and 300 MHZ NMR). By these criteria a migration of the lysyl group from the 2′ to the 3′ position of the glycerol occurs in the presence of a strong acid catalyst such as HCl. On the other hand, a weak acid such as acetic acid appears ineffective in inducing lysyl migration, even at very high concentrations.Spectroscopic analysis furthermore demonstrated that lysylphosphatidylglycerol extracted from the Staphylococcus aureus membrane, is a 3′-isomer.  相似文献   

18.
Plasmenyl phospholipids (1-alk-1′-enyl-2-acyl-3-glycerophospholipids, plasmalogens) are a structurally unique class of lipids that contain an α-unsaturated ether substituent at the sn-1 position of the glycerol backbone. Several studies have supported the hypothesis that plasmalogens may be antioxidant molecules that protect cells from oxidative stress. Because the molecular mechanisms responsible for the antioxidant properties of plasmenyl phospholipids are not fully understood, the oxidation of plasmalogens in natural mixtures of phospholipids was studied using electrospray tandem mass spectrometry. Glycerophosphoethanolamine (GPE) lipids from bovine brain were found to contain six major molecular species (16:0p/18:1-, 18:1p/18:1-, 18:0p/20:4-, 16:0p/20:4, 18:0a/20:4-, and 18:0a/22:6-GPE). Oxidation of GPE yielded lyso phospholipid products derived from plasmalogen species containing only monounsaturated sn-2 substituents and diacyl-GPE with oxidized polyunsaturated fatty acyl substituents at sn-2. The only plasmalogen species remaining intact following oxidation contained monounsaturated fatty acyl groups esterified at sn-2. The mechanism responsible for the rapid and specific destruction of plasmalogen GPE may likely involve unique reactivity imparted by a polyunsaturated fatty acyl group esterified at sn-2. This structural feature may play a central role determining the antioxidant properties ascribed to this class of phospholipids.  相似文献   

19.
Specific oxidized phospholipids (oxPCCD36) accumulate in vivo at sites of oxidative stress and serve as high affinity ligands for scavenger receptors class B (CD36 and SR-BI). Recognition of oxPCCD36 by scavenger receptors plays a role in several pathophysiological processes. The structural basis for the recognition of oxPCCD36 by CD36 and SR-BI is poorly understood. A characteristic feature of oxPCCD36 is an sn-2 acyl group that incorporates a terminal γ-hydroxy (or oxo)-α,β-unsaturated carbonyl. In the present study, a series of model oxidized phospholipids were designed, synthesized, and tested for their ability to serve as ligands for CD36 and SR-BI. We demonstrated that intact the sn-1 hydrophobic chain, the sn-3 hydrophilic phosphocholine or phosphatidic acid group, and the polar sn-2 tail are absolutely essential for high affinity binding. We further found that a terminal negatively charged carboxylate at the sn-2 position suffices to generate high binding affinity to class B scavenger receptors. In addition, factors such as polarity, rigidity, optimal chain length of sn-2, and sn-3 positions and negative charge at the sn-3 position of phospholipids further modulate the binding affinity. We conclude that all three positions of oxidized phospholipids are essential for the effective recognition by scavenger receptors class B. Furthermore, the structure of residues in these positions controls the affinity of the binding. The present studies suggest that, in addition to oxPCCD36, other oxidized phospholipids observed in vivo may represent novel ligands for scavenger receptors class B.  相似文献   

20.
Urethan-induced pulmonary adenomas of mice are composed of cells that appear to be morphologically identical to alveolar type II cells and synthesize disaturated diacyl-sn-glycero-3-phosphocholine, the major component of pulmonary surfactant. 1-[1-14C]Palmitoyl-sn-glycero-3-phosphocholine and [1-14C]palmitic acid were compared as precursors of disaturated diacyl-sn-glycero-3-phosphocholine in the adenoma type II cells by incubating both substrates with whole adenomas. When the precursors were compared at equal concentrations (100 μm) in the presence of albumin (1 mg/ml), the rates of incorporation of 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine and [1-14C]palmitic acid into diacyl-sn-glycero-3-phosphocholine were 5.2 and 2.9 nmol/min · g tissue, respectively. The concentration of monoacyl-sn-glycero-3-phosphocholine (lysolecithin) in the blood plasma of BALB/c mice was 150 μm. In short-term labeling experiments, the label in disaturated diacyl-sn-glycero-3-phosphocholine was equally distributed between the sn-1 and sn-2 positions when 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine was the precursor, whereas 75 to 80% was in the sn-2 position when [1-14C]palmitic acid was the precursor. The ratios are consistent with incorporation of 1-palmitoyl-sn-glycero-3-phosphocholine via the lysolecithin:lysolecithin transacylase reaction and incorporation of palmitate via acylation of 1-palmitoyl-sn-glycero-3-phosphocholine by acyl-CoA:lysolecithin acyltransferase. 1-[1-14C]Palmitoyl-sn-glycero-3-phospho-[3H-methyl]choline was incorporated into total cellular diacyl-sn-glycero-3-phosphocholine with an isotope ratio similar to that of the precursor; the disaturated species was more enriched in 14C. These findings indicate the cells take up intact monoacyl-sn-glycero-3-phosphocholine and incorporate it into diacyl-sn-glycero-3-phosphocholine. The ability of the cells to utilize intact lysophosphoglycerides for synthesis of cellular lipids was further demonstrated by showing that ether analogs, 1-alkyl-sn-glycero-3-phosphocholine and 1-alkyl-sn-glycero-3-phosphoethanolamine, are taken up and acylated by the cells. Activities of lysolecithin:lysolecithin transacylase and acyl-CoA:lysolecithin acyltransferase were measured in subcellular fractions of the adenoma type II cells; the specific activities of the enzymes were 2.1 nmol/min · mg soluble protein and 21 nmol/min · mg microsomal protein, respectively. The total activity of the acyltransferase in the cell fractions was about four-fold higher than the activity of the transacylase. Characteristics of the two enzymes were studied and are discussed. The findings indicate that exogenous 1-palmitoyl-sn-glycero-3-phosphocholine and palmitic acid both serve as efficient precursors of disaturated diacyl-sn-glycero-3-phosphocholine in the adenoma alveolar type II cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号