首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The administration of 3-methylcholanthrene (MC) to rats results in a marked increase in the specific activities of hepatic RNA polymerases I and II. In the present study, we were able to show that this increase was not caused by a shift in the ratio of ‘free’ to ‘template-engaged’ RNA polymerase. By means of binding studies with [3H]amatoxin, we were unable to demonstrate any increase in the number of RNA polymerase II molecules in liver after MC administration to the rats. RNA polymerase I was purified in excess of 3000-fold from hepatic nuclei isolated both from control and MC-treated rats. The stimulation in activity was demonstrated at each step in the purification scheme until glycerol sedimentation analysis. Results from cation-exchange chromatography on phosphocellulose indicated that the polycyclic hydrocarbon increased the enzyme activity of RNA polymerase Ib somewhat specifically. Subsequent to glycerol gradient centrifugation, this stimulatory advantage was no longer evident. Reconstitution experiments revealed the presence of a stimulatory component, which was demonstrated in low molecular weight fractions from both control and experimental preparations.  相似文献   

2.
3.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin α-amanitin was used to determine the relative and absolute levels of RNA synthesis by RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was monitored by hybridization to viral DNA, and of viral 5.5S RNA, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

4.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin alpha-amanitin was used to determine the relative and absolute levels of RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication of from replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

5.
6.
Nuclear DNA-dependent RNA polymerases I, II and III were purified from kidney, liver and spleen from Swiss mice (Mus musculis) and from seven transplantable murine tumors. In the presence of the optimal concentration of (NH4)2SO4 for each polymerase, 1-8 mM spermidine or spermine stimulated most polymerases several fold, and generally, enzyme I was stimulated more than either enzyme II or III. Spermine was more efficacious than spermidine as a stimulant of polymerase activity except for polymerase III from three tumors. Tumor polymerases I (or II) and the corresponding normal tissue enzymes responded similarly to the polyamines. Stimulation of a RNA polymerase by a polyamine could not be correlated with the growth rate of the tissues of polymerase origin or with the tissue's RNA polymerase or RNA synthetic activities.  相似文献   

7.
Nuclei have been isolated from Xenopus laevis embryos and incubated under conditions allowing RNA synthesis to proceed for more than 3 h. The RNA molecules synthesized on the endogenous template are stable, heterogeneous in size and correspond to the activities of the three RNA polymerases.In these in vitro conditions we have determined the extent of activity of the three RNA polymerases during the embryonic development from blastula to swimming tadpole. Our results on isolated nuclei are in good agreement with the changes in RNA synthesis which take place during normal embryonic development.We have measured both the “template-bound” and the “free” activities of each of the three RNA polymerases during development. Amongst the total RNA polymerase activities engaged on the template, the proportion of polymerase I increases as development proceeds: at the blastula stage, there is practically no RNA polymerase I engaged on the template, whereas in swimming tadpoles, RNA polymerase I amounts to about 90% of the RNA polymerases bound to the DNA. Conversely, RNA polymerase I represents the major part of free RNA polymerases in blastula nuclei.Autoradiography of incubated nuclei shows that, at least in swimming tadpoles nuclei, both “free” and “template-bound” RNA polymerase I are localized in the nucleoli.The evolution of “template-bound” RNA polymerase II activity during development is quite different from that of RNA polymerase I: RNA polymerase II activity represents 75% of engaged polymerase activity in blastulae and only 47% at the swimming tadpoles stage.The results suggest that part of the “free” RNA polymerase I activity might progressively become “template-bound” during embryogenesis.  相似文献   

8.
Abstract: Chronic morphine pellet implantation was found to decrease the specific activity of two forms of mouse brain RNA polymerase I and to alter the requirements of Mg2+ and Mn2+ for the activities of RNA polymerases II and III. DNA-dependent RNA polymerases were partially purified from small dense nuclei isolated from brains of naive and morphine tolerant-dependent mice, and three RNA polymerases were separated on a DEAE-Sephadex A-25 column. The three fractions, referred to as peak I, peak II, and peak III, were studied, characterized, and identified as being RNA polymerases I, II, and III, respectively. Chronic-morphine pellet implantation resulted in a lower specific activity of RNA polymerase I, but the specific activities of RNA polymerases II and III were not affected. This effect was prevented by preimplantation of a naloxone pellet and thus was narcotic-specific. Chronic morphine treatment lowered the concentration of Mg2+ required for optimal activity of RNA polymerase II and elevated the Mn2+-Mg2+ activity ratios of RNA polymerases II and III. A second DEAE-Sephadex A-25 column chromatography of the peak I RNA polymerase was carried out, revealing five component activity peaks. Two of these contained lower specific activities as a result of chronic morphine pelletimplantation. These specific changes in RNA polymerase function in morphine tolerance-dependence may be associated with the elevated chromatin template activities, altered chromatin phosphorylation, and elevated rates of cell-free translation that have been reported by others.  相似文献   

9.
10.
The effect of low concentrations of cyclic GMP (guanosine 3':5'-cyclic monophosphate) on the in vitro enzymatic activities of DNA-dependent RNA polymerases isolated from human peripheral blood lymphocytes has been investigated. In agreement with earlier studies which employed isolated nuclei as the enzyme source, an increase in the activity of partially purified RNA polymerase I is observed in the presence of cyclic GMP (10(-8) to 10(-10)M). RNA polymerase II activity is inhibited by the presence of cyclic GMP at concentrations between 10(-4) and 10(-10)M. RNA polymerase III activity is stimulated in a bimodal fashion by the presence of cyclic GMP with maximal activity noted at 10(-8) to 10(-10) M and 10(-5)M. In addition, [3H]cyclic GMP binds specifically to chromatographic fractions which are known to contain RNA polymerases I, II and III. This binding to RNA polymerases II and III is apprarently less tenacious as demonstrated by dissociation studies. The observations provide additional evidence for a role for cyclic GMP in the regulation of RNA synthesis.  相似文献   

11.
Yeast DNA-dependent RNA polymerases I, II, and III are phosphorylated in vivo. Yeast cells were grown continuously in 32Pi and the RNA polymerases were isolated by a new procedure which allows the simultaneous purification of these enzymes from small quantities (35 to 60 g) of cells. Each of the RNA polymerases was phosphorylated. The following phosphorylated polymerase polypeptides were identified: polymerase I subunits of 185,000, 44,000, 36,000, 24,000, and 20,000 daltons; a polymerase II subunit of 24,000 daltons; and polymerase III subunits of 24,000 and 20,000 daltons. The incorporated 32P was acid-stable but base-labile. Phosphoserine and phosphothreonine were identified after partial acid hydrolysis of purified [32P]polymerase I. A yeast protein kinase that co-purifies with polymerase I during part of the isolation procedure was partially purified and characterized. This protein kinase phosphorylates the subunits of the purified polymerases that are phosphorylated in vivo and, in addition, a polymerase I subunit of 48,000 daltons and a polymerase II subunit of 33,500 daltons. Phosphorylation of the purified enzymes with this protein kinase had no substantial effect on polymerase activity in simple assays using native yeast DNA as a template. Preincubation of purified polymerase I with acid or alkaline phosphatase also had no detectable effect on polymerase activity.  相似文献   

12.
Summary A purification procedure to obtain RNA polymerases I (or A) and II (or B) from Dictyostelium discoideum amoeba has been developed. The enzymes were solubilized from purified nuclei and separated by DEAF-Sephadex chromatography. RNA polymerases I and II were further purified by a second chromatography on DEAE-Sephadex followed by chromatographies on phosphocellulose and heparin-sepharose. The specific activities of purified RNA polymerases I and II are 92 units/ mg protein and 70 units/ mg protein, respectively. The subunit structure of both RNA polymerases were analyzed by polyacrylamide gel electrophoresis under denaturing conditions after glycerol gradient centrifugation of the enzymes. The putative subunits of RNA polymerase I have molecular weights of 180 000,125 000,43 000,40 000,34 000, 31 000, 25 000,19 000, 17 000 and 14 000. The putative subunits of RNA polymerase II have molecular weights of 200 000 (170 000), 130 000, 33 000, 25 000, 19 000, 17 000, 15 000, 13 000. There are three polypeptides with common molecular weight in Dictyostelium RNA polymerases I and 11. The subunit of 25 000 daltons of both enzymes has common immunological determinants with RNA polymerase II from crustacean Artemia.Abbreviations TLCK tosyl-lysine-chloromethyl-ketone - DPT diazophenylthioether  相似文献   

13.
Chromatin fractions were isolated from intact and wounded sweet potato root tissues. The synthesis of RNA by the chromatin fractions was dependent on four ribonucleoside triphosphates and a divalent cation such as Mg2+ and Mn2+, Mn2+ being most effective. Whereas phosphate did not interfere with the polymerase reaction, it was totally blocked by pyrophosphate. The reaction was inhibited by DNase and actinomycin D as well as RNase and trypsin. The RNA polymerases of sweet potato root needed SH-groups for catalysis. Activity of chromatin-bound RNA polymerases (EC 2.7.7.6) promptly increased in the 6 hr after wounding and then decreased gradually up to 24 hr. Under the present experimental conditions it was mostly due to the activity of RNA polymerase I. RNA polymerase II contributed only about 5 to 15% to the total activity. The increase in the activity after wounding was completely inhibited by cycloheximide. Plant hormones such as 2,4-dichlorophenoxyacetic acid, gibberellic acid and dibutyryl cyclic adenosine 3′,5′-monophosphate stimulated the increase in RNA polymerases three to four times after wounding. Ethylene partially suppressed the wound-induced increase of RNA polymerases.  相似文献   

14.
1. DNA-dependent RNA polymerases I and II were purified approx 3900- and 13,000-fold, respectively, from sonicated nuclear extract of cherry salmon (Oncorhynchus masou) liver by DEAE-Sephadex, heparin-Sepharose and DNA-cellulose column chromatography. 2. The purified RNA polymerases exhibited a requirement for four kinds of ribonucleoside 5'-triphosphates, an exogeneous template and divalent cation. 3. The activities of RNA polymerases I and II were inhibited by Actinomycin D (24 micrograms/ml) but not by Rifampicin (200 micrograms/ml). 4. RNA polymerase I preferred native DNA as template, while polymerase II preferred single-stranded DNA. 5. RNA polymerase II was inhibited by a low concentration of alpha-amanitin (0.02 micrograms/ml). RNA polymerase I was also inhibited by the relatively high concentration of alpha-amanitin (IC50 = 100 micrograms/ml and IC70 = 750 micrograms/ml). 6. RNA polymerases from cherry salmon exhibited a higher activity at low temperature than from rat liver.  相似文献   

15.
DNA-dependent RNA polymerases were solubilized from nuclei of cauliflower inflorescences and purified by agarose A-1.5m, DEAE-cellulose, DEAE-Sephadex, and phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerases I + III were separated from II by DEAE-cellulose chromatography. Subsequent chromatography on DEAE-Sephadex resolved RNA polymerase I from III. RNA polymerases I and II were further purified to high specific activity by phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerase I was refractory to α-amanitin at 2 mg/ml. RNA polymerase II was 50% inhibited at 0.05 μg/ml, and RNA polymerase III was 50% inhibited at 1 to 2 mg/ml of α-amanitin. The enzymes were characterized with respect to divalent cation optima, ionic strength optima, and abilities to transcribe cauliflower, synthetic, and cauliflower mosaic virus DNA templates.  相似文献   

16.
17.
18.
19.
20.
The DNA-dependent RNA polymerase activities of isolated nuclei from lymphocytes were examined after stimulation with phytohemagglutinin (PHA). The nuclear fraction was prepared with Mg++ or Mn++ to distinguish between polymerase I (nucleolar) and polymerase II (nucleoplasmic). Distinction between polymerases II and III was obtained by the addition of α-amanitin to the reaction mixture. The results indicated that within 15 min after exposure to PHA the activity of polymerase I increased. Polymerase II activity increased after 1 hr. The enhancement was linear for 6 hr and then leveled off for the subsequent 48 hr. Small increase in polymerase III activity was observed at 48 hr. Inhibition of protein synthesis at the time of exposure to PHA did not prevent the increase in activities during the initial 6 hr. These results imply that the initial increase in enzymatic activities is dependent upon preexisting polymerase molecules and/or factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号