首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In vitro incubation of rat liver micro-somes with [14C]-furan in the presence of NADPH resulted in the covalent incorporation of furan-derived radioactivity in microsomal protein. Compared to microsomes from untreated rats a two- to threefold increase in binding was observed with microsomes from phenobarbital-treated rats and a four- to five-fold increase was observed with microsomes from rats pretreated with imidazole or pyrazole. Covalent binding was reduced with microsomes from rats pretreated with β-naphthoflavone. Chemicals containing an amine group (semicarbazide), those in which the amine group is blocked but have a free thiol group (N-acetylcysteine), and those which have both an amine and a thiol group (glutathione) effectively blocked binding of [14C]-furan to microsomal protein. A decrease in cytochrome P-450 (P-450) content and decreases in the activities of P-450-dependent aniline hydroxylase, 7-ethoxycoumarin-O-deethylase (BCD), and 7-ethoxyresorufin-O-deethylase (ERD) was observed 24 hours after a single oral administration of 8 or 25 mg/kg of furan, suggesting that the reactive intermediate formed during P-450 catalyzed metabolism could be binding with nucleophilic groups within the P-450. In vitro studies indicated a significant decrease in the activity of aniline hydroxylase in pyrazole microsomes and BCD in phenobarbital microsomes without any significant change in the CO-binding spectrum of P-450 or in the total microsomal heme content, suggesting that furan inhibits the P-450s induced by PB and pyrazole. An almost equal distribution of furan-derived radioactivity in the heme and protein fractions of the CO-binding particles after In vitro treatment of microsomes with furan suggests binding of furan metabolites with heme and apoprotein of P-450, and, probably, due to this interaction, furan is acting as a suicide inhibitor of P-450.  相似文献   

2.
Covalent binding of benzo(a)pyrene (BP) metabolites to DNA was investigated in hepatocytes and liver microsomes (MC-microsomes) isolated from 3-methylcholanthrene-treated rats. The major DNA adducts formed during BP metabolism in both hepatocytes and incubations of calf thymus DNA with MC-microsomes were adducts of anti and syn isomers of trans-7,8,-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (diol-epoxides) and of epoxide derivatives of BP-9-phenol (phenol-oxides). Diol-epoxide adducts predominated over phenol-oxide adducts in hepatocytes, while the reverse was found in microsomal incubations. In hepatocytes, both diol-epoxide and phenol-oxide adducts increased with increasing BP concentration; the ratio of diol-epoxide adduct to phenol-oxide adduct decreased from 6:1 to 3:1 between 30 and 100 μm BP. In microsomal incubations, decreases in DNA concentration or addition of the hepatocyte L15 medium produced larger decreases in phenol-oxide adducts than in diol-epoxide adducts. The effects of the inhibitors salicylamide, diethylmaleate, and 3,3,3,-trichloropropene oxide on formation of BP-DNA adducts are interpreted in terms of changes in precursor formation and metabolism and reductions in hepatocyte glutathione levels. Addition of 1.5 mg/ml exogenous DNA to hepatocyte incubations produced no change in covalent binding to cellular DNA, even though extracellular BP-DNA adducts accounted for 97% of the total adducts formed. Both the relative amounts of diol-epoxide and phenol-oxide adducts and the total adducts per milligram of DNA were indistinguishable with respect to extracellular and intracellular DNA. Modification of extracellular DNA by diol-epoxides was at least as efficient as modification of calf thymus DNA in incubations with MC-microsomes. It is concluded that BP diol-epoxides and phenol-oxides can leave the cell or enter the nucleus with equal facility but are more effective in binding to DNA in the cell in which they are generated.  相似文献   

3.
Sonic disrupted mitoplasts from 3-methylcholanthrene (MCA) treated rats can catalyze the formation of benzo(a)pyrene (BaP) adducts with calf thymus DNA in the presence of an NADPH generating system. The mitoplasts used in this study contained less than 1% microsomal marker enzymes: rotenone insensitive NADPH cytochrome c reductase and glucose-6-phosphatase. The rates of BaP metabolism and DNA adduct formation per nanomole cytochrome P-450 were different for MCA induced mitochondrial and microsomal enzymes. The major B(a)P DNA adducts formed in incubations with lysed mitoplasts were derived from reaction of 9-OH-B(a)P-4,5 oxide with deoxyguanosine. The results suggest a potential role of mitochondrial monooxygenase activity in the covalent binding of B(a)P to mitochondrial DNA.  相似文献   

4.
The nitrosoureas, CCNU (1-(2-chloroethyl)-3-(cyclohexyl)-1-nitrosourea) and BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) are representatives of a class of N-nitroso compounds which undergo denitrosation in the presence of NAD(P)H and deoxygenated hepatic microsomes from rats to yield nitric oxide (NO) and the denitrosated parent compound. Formation of NO during microsomal denitrosation of CCNU and BCNU was determined by three methods. With one procedure, NO was measured and concentration shown to increase over time in the head gas above microsomal incubations with BCNU. Two additional methods utilized NO binding to either ferrous cytochrome P-450 or hemoglobin to form distinct Soret maxima at 444 and 415 nm, respectively. Incubation of either BCNU or CCNU in the presence of NAD(P)H and deoxygenated microsomes resulted in the formation of identical cytochrome P-450 ferrous · NO optical difference spectra. Determination of the P-450 ferrous · NO extinction coefficient by the change in absorbance at 444 minus 500 nm allowed measurement of rates of denitrosation by monitoring the increase in absorbance at 444 nm. The rates of BCNU and CCNU denitrosation were determined to be 4.8 and 2.0 nmol NO/min/mg protein, respectively, for phenobarbital (PB) induced microsomes. For the purpose of comparison, the rate of [14C]CCNU (1-(2-[14C]chloroethyl)-3-(cyclohexyl)-1-nitrosourea turnover was examined by the isolation of [14C]CCU (1-(2-[14C] chloroethyl)-3-(cyclohexyl)-1-urea) from incubations that contained NADPH and deoxygenated PB-induced microsomes. These analyses showed stoichiometric amounts of NO and [14C]CCU being formed at a rate of 2.0 nmol/min/mg protein. Denitrosation catalysis by microsomes was enhanced by phenobarbital pretreatment and partially decreased by cytochrome P-450 inhibitors, SKF-525A, α-naphthoflavone (ANF), metyrapone, and CO, suggesting a cytochrome P-450-dependent denitrosation. However, in the presence of NADPH and purified NADPH cytochrome P-450 reductase reconstituted in dilauroylphosphatidylcholine, [14C]CCNU was shown to undergo denitrosation to [14C]CCU. Thus, NADPH cytochrome P-450 reductase could support denitrosation in the absence of cytochrome P-450.  相似文献   

5.
Five distinct hydrocarbon-deoxyribonucleoside adducts are separated by high pressure liquid chromatography after reaction of benzo[alpha]pyrene with calf thymus DNA in the presence of liver microsomes from 3-methylcholanthrene treated rats. The two major adducts co-chromatography with deoxyribonucleoside adducts obtained after hydrolysis of calf thymus DNA previously reacted with liver microsomal metabolically activated 9-hydroxy-benzo[alpha]pyrene or trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene. High magnesium ion concentrations in the microsomal incubations cause a significant decrease in the covalent binding of the hydrocarbon to DNA but do not affect the qualitative distribution of the individual benzo[alpha]pyrene-deoxyribonucleoside adducts.  相似文献   

6.
2-Hydroxyestradiol, 2-hydroxyestrone and 2-hydroxy-17α-ethynylestradiol, oxidation products of naturally occurring estrogens and synthetic estrogens in some oral contraceptives were found to be converted by rat liver microsomes to reactive metabolites that become irreversibly bound to microsomal protein. The irreversible binding required microsomes, oxygen and NADPH. The NADPH could be replaced by a xanthine-xanthine oxidase system which is known to generate superoxide anions. The irreversible binding was substantially inhibited by superoxide dismutase, 30% in those incubations containing NADPH and 98% in those incubations containing the xanthine-xanthine oxidase system. Further studies with 2-hydroxyestradiol showed that microsomal cytochrome P-450 was rate limiting in the NADPH-dependent irreversible binding, because the binding was inhibited 62% by an antibody against NADPH-cytochrome c reductase and 70% in an atmosphere of CO:O2 (9:1) when compared to an atmosphere of N2:O2 (9:1). Phenobarbital, a known inducer of cytochrome P-450, had no effect on the irreversible binding of 2-hydroxyestradiol, whereas another inducer of P-450, pregnenolone-16α-carbonitrile, markedly increased the irreversible binding. In contrast, cobaltous chloride, an inhibitor of the synthesis of cytochrome P-450, decreased both P-450 and the irreversible binding. These results are consistent with a mechanism for irreversible binding of estrogens and 2-hydroxyestrogens to microsomes that requires oxidation of the catechol nucleus by cytochrome P-450-generated superoxide anion.  相似文献   

7.
MSM Hanafy  JA Bogan 《Life sciences》1980,27(13):1225-1231
Tritiated 3-methylindole (3MI) was administered intravenously to calves. Total and covalent bound radioactivity were measured in different tissues. Pulmonary tissue showed the highest concentration of covalent bound radioactivity. (G-3H) or (methyl-14C) 3MI became covalently bound to microsomal protein when incubated with bovine lung microsomes. This covalent binding was dependent on time, temperature, oxygen and NADPH and was inhibited by SKF-525A, cytochrome c, a carbon monoxide enriched atmosphere and cysteine. The microsomal enzyme system catalysing covalent binding of 3MI has the classical characteristics of a cytochrome P-450 dependent mixed function oxidase. Metabolic activation of 3MI to a highly electrophilic intermediate, may be fundamental in the pathogenesis of 3MI induced pulmonary damage.  相似文献   

8.
Incubation of [14C]benzene or [14C]phenol with liver microsomes from untreated rats, in the presence of a NADPH-generating system, gave rise to irreversible binding of metabolites to microsomal macromolecules. For both substrates this binding was inhibited by more than 50% by addition of superoxide dismutase to the incubation mixtures. The decrease in binding was compensated for by accumulation of [14C]hydroquinone, indicating superoxide-mediated oxidation of hydroquinone as one step in the activation of benzene to metabolites binding to microsomal macromolecules. Since our previous work had shown that binding occurred mainly with protein rather than ribonucleic acid and was virtually completely prevented by glutathione, suggesting identity of metabolite(s) responsible for binding to protein and glutathione, a conjugate was chemically prepared from p-benzoquinone and reduced glutathione (GSH) and identified by field desorption mass spectrometry (FDMS) as 2-(S-glutathionyl) hydroquinone. Microsomal incubations, containing an NADPH-generating system, with benzene, phenol, hydroquinone or p-benzoquinone in the presence of [3H]glutathione or, alternatively, with [14C]benzene or [14C]phenol in the presence of unlabeled glutathione, were performed. All of these incubations gave rise to a peak of radioactivity eluting from the high pressure liquid chromatograph (HPLC) at a retention time identical to that of the chemically prepared 2-(S-glutathionyl) hydroquinone, whilst microsomal incubation of catechol in the presence of [3H]glutathione led to a conjugate with a very different retention time which was not observed after incubation of benzene or phenol. The microsomal metabolites of p-benzoquinone, hydroquinone and phenol thus eluting from the HPLC were further identified as the 2-(S-glutathionyl) hydroquinone by field desorption mass spectrometry. The glutathione adduct formed from benzene during microsomal activation eluted from HPLC with the same retention time and its mass spectrum also contained the molecular ion (MH+) (m/e 416) of this conjugate as an intense peak, but the fragmentation patterns did not allow definite assignments probably due to the considerably smaller amounts of ultimate reactive metabolites formed from this pre-precursor and thus relatively larger amounts of impurities.The results indicate that rat liver microsomes activate benzene via phenol and hydroquinone to p-benzosemiquinone and/or p-benzoquinone as quantitatively important reactive metabolites.  相似文献   

9.
In liver fractions from male Sprague-Dawley rats, the metabolism of methacrylonitrile (MeAN) to cyanide (CN-) was localized in microsomal fraction and required reduced nicotinamide adenine dinucleotide phosphate (NADPH) and oxygen for maximal activity. The biotransformation of MeAN to CN- was characterized with respect to time, microsomal protein concentration, pH, and temperature. Metabolism of MeAN was increased in microsomes obtained from phenobarbital-treated rats (310% of control) and decreased with CoCl2 and SKF 525 A treatments (55% and 61%, respectively). Addition of the epoxide hydratase inhibitor, 1,1,1-trichloropropane 2,3-oxide, decreased the formation of CN- from MeAN. Addition of glutathione, cysteine, D-penicillamine, and 2-mercaptoethanol enhanced the released of CN- from MeAN. These findings indicate that MeAN is metabolized to CN- via a cytochrome P-450-dependent mixed-function oxidase system.  相似文献   

10.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

11.
Two major forms of liver microsomal cytochrome P 450, one from untreated rats (P 450 A2NI) and the other from phenobarbital-treated rats (P 450 B2PB), were partially purified. Reconstitution of monooxygenase activities of purified enzymes and inhibition patterns of these activities by antibodies in microsomes gave the following results: 1) aniline hydroxylase activity is mainly supported by cytochrome P 450 A2NI. This form is the major one in microsomes from control rats, but is also found at minute amounts in microsomes from phenobarbital-treated rats. It behaves as a constitutive form. 2) 4-nitroanisole-and benzphetamine-demethylase activities are mainly supported by cytochrome P 450 B2PB which is predominant in phenobarbital-treated rats but is also present in control microsomes at low levels. 3) 4-nitroanisole-O-demethylase activity is less specific than benzphetamine-N-demethylase activity towards cytochrome P 450 B2PB.  相似文献   

12.
Native and denatured calf thymus DNA, and homopolyribonucleotides were compared with respect to chromium and protein binding after an in vitro incubation with rat liver microsomes, NADPH, and chromium(VI) or chromium(III). A significant amount of chromium bound to DNA when chromium(VI) was incubated with the native or the denatured form of DNA in the presence of microsomes and NADPH. For both native and denatured DNA the amount of protein bound to DNA increased with the amount of chromium bound to DNA. Denatured DNA had much higher amounts of chromium and protein bound than native DNA. There was no interaction between chromium(VI) and either form of DNA in the absence of the complete microsomal reducing system. The binding of chrornium(III) to native or denatured DNA was small and relatively unaffected by the presence of microsomes and NADPH. The binding of chromium and protein to polyriboadenylic acid (poly(A)), polyribocytidylic acid (poly(C), polyri-boguanylic acid (poly(G)) and polyribouridylic acid (poly(U)) was determined after incubation with chromium(VI) in the presence of microsomes and NADPH. The magnitude of chromium and protein binding to the ribo-polymers was found to be poly(G) ? poly(A) ? poly(C) ? poly(U). These results suggest that the metabolism of chromium(VI) is necessary in order for chromium to interact significantly with nucleic acids. The metabolically-produced chromium preferentially binds to the base guanine and results in DNA-protein cross-links. These findings are discussed with respect to the proposed scheme for the carcinogenicity of chromium(VI). Keywords: DNA-protein cross-links — Chromium-guanine interaction-Microsomal reduction of chromate  相似文献   

13.
Incubation of R(+)-[14C]pulegone with rat liver microsomes in the presence of NADPH resulted in covalent binding of radioactive material to macromolecules. Covalent binding was much higher in phenobarbital-treated microsomes as compared to 3-methylcholanthrene treated or control microsomes. The Km and Vmax of covalent binding was 0.4 mM and 1.7 nmol min-1 mg-1, respectively. Covalent binding was drastically inhibited (93%) in the presence of piperonyl butoxide. Antibodies to phenobarbital-induced cytochrome P-450 and NADPH-cytochrome P-450 reductase inhibited covalent binding to an extent of 72% and 47%, respectively. Cysteine and semicarbazide also inhibited NADPH dependent binding of radiolabel from R(+)-[14C]pulegone to microsomal proteins. The results suggest the involvement of liver microsomal cytochrome P-450 in the bioactivation of R(+)-pulegone to reactive metabolite(s) which might be responsible for covalent binding to macromolecules resulting in toxicity.  相似文献   

14.
Loss of tritium from specific positions in [3H,14C] aromatic hydrocarbons can elucidate their binding site(s) to DNA and RNA and indicate the mechanism of activation. Studies of tritium loss from [6-3H,14C]benzo[a]pyrene(B[a]P), [1,3-3H,14C]B[a]P, [1,3,6-3H,14C]B[a]P, [6,7-3H,14C]B[a]P, and [7-3H,14C]B[a]P were conducted in vitro using liver nuclei and microsomes from 3-methylcholanthrene-induced Sprague-Dawley rats and in vivo on the skin of Charles River CD-1 mice. The relative loss of tritium from [3H, 14C]B[a]P was measured after binding to skin DNA and RNA, to nuclear DNA, and to native and denatured calf thymus and rat liver DNA's and poly(G) by microsomal activation. In skin, nuclei, and microsomes plus native DNA, virtually all B[a]P binding occurred at positions 1,3 and 6; while with microsomes plus denatured DNA or poly(G), B[a]P showed no binding at the 6 position and a small amount at the 1 and 3 positions. In vivo and with nuclei, binding at the 6 position predominated. Little loss of tritium from the 7 position was seen; this was expected because binding at this position is not thought to occur. This confirms the interpretation of loss of tritium as an indication of binding at a given position. These results demonstrate that the use of microsomes to activate B[a]P is not a valid model system for delineating the in vivo mechanism of B[a]P activation, and support previous evidence for one-electron oxidation as the mechanism of activation of hydrocarbons in binding to nucleic acids.  相似文献   

15.
The effects of β-carotene (βC) and its oxidation products on the binding of benzo[a]pyrene (BaP) metabolites to calf thymus DNA was investigated in the presence of rat liver microsomes. Mixtures of βC oxidation products (βCOP) as well as separated, individual βC oxidation products were studied. One set of experiments, for example, involved the use of the mixture of βCOP obtained after a 2-h radical-initiated oxidation. For this data set, the incorporation of unoxidized βC into microsomal membranes caused the level of binding of BaP metabolites to DNA to decrease by 29% over that observed in the absence of βC; however, the incorporation of the mixture of βCOP caused the binding of BaP metabolites to DNA to increase 1.7-fold relative to controls without βC. Two variations of this experiment were studied: (1) When no NADPH was added, βC decreased the binding of BaP metabolites to DNA by 19%, but the mixture of βCOP increased binding by 3.3-fold relative to that observed in the absence of βC. (2) When NADPH was added under near-anaerobic conditions, βC caused an almost total (94%) decrease in binding whereas βCOP had no effect on the amount of binding relative to that observed in the absence of βC. Both βCOP and cumene hydroperoxide caused BaP metabolites to bind to DNA even when NADPH was omitted from the incubation mixture. Separation of the mixture of βC oxidation products into fractions by HPLC allowed preliminary testing of individual βC oxidation products separately; of the various fractions tested, the products tentatively identified as 11,15′-cyclo-12,15-epoxy-11,12,15,15′-tetrahydro-β-carotene and β-carotene-5,6-epoxide appeared to cause the largest increase in BaP-DNA binding. Microsomes from rats induced with 3-methylcholanthrene (3MC) or Aroclor 1254 produced different levels of binding in some experimental conditions. We hypothesize that, under some conditions, the incorporation of βC into microsomal membranes can be protective against P450-catalyzed BaP binding to DNA; however, the incorporation of βCOP facilitates the formation of BaP metabolites that bind DNA, although only certain P450 isoforms catalyze the binding process.  相似文献   

16.
When [3H]benzo[a]pyrene is incubated in vitro together with DNA, NADPH and rat lung microsomes, covalent binding of benzo[a]pyrene (BP) metabolites to DNA occurs. These metabolite-nucleoside complexes can be resolved into several distinct peaks by elution of a Sephadex LH-20 column with a water-methanol gradient. 3-Methylcholanthrene (MC) pretreatment of animals induces the total covalent binding in vitro several-fold and increases the amounts of at least five metabolite-nucleoside complexes associated with the 7,8-diol-9,10-epoxidcs, the 7,8-oxide or quinones oxygenated further, the 4,5-oxide and phenols oxygenated further. These increases correspond well with the increases in the production of both non-K-region and K-region metabolites of BP by lung microsomes, as determined by highpressure liquid chromatography (HPLC). On the other hand, when [3H]BP is metabolized in isolated perfused rat lung, only the peak representing the 7,8-diol-9,10-epoxide bound to nucleoside(s) is readily detectable and then only in lungs from MC-treated animals. The extent of binding of BP metabolites to lung DNA is very low, about 0.0004% of the total dose applied to the perfusion medium; more than 60% of this can be accounted for by the binding of the 7,8-diol-9,10-epoxides to nucleoside(s). It is suggested that the further metabolism leading to metabolites not available to covalent binding, (e.g. conjugation) of primary BP metabolites in the intact tissue is responsible for the differences in the metabolite-nucleoside patterns observed in vivo, as compared with microsomal metabolism in vitro.  相似文献   

17.
Radiolabeled arene oxide was recovered from incubations containing [3H]-2,2′,5,5′-tetrachlorobiphenyl (3H-TCB), unlabeled 2,2′,5,5′-tetrachlorobiphenyl-3,4-oxide (TCBAO), 3,3,3-trichloropropene-1,2-oxide (TCPO), NADPH, and liver microsomes from phenobarbital-induced rats. No labeled arene oxide was generated in the absence of NADPH, nor during the metabolism of unlabeled TCB in the presence of [3H]-H2O. The recovered oxide (radiolabeled and carrier) was characterized by mobility on silica gel and by conversion to 3- and 4-hydroxy-TCB. Formation of a dihydrodiol metabolite was apparently blocked by inhibition of epoxide hydrase. These data provide the first direct evidence that arene oxides are intermediates of halogenated biphenyl metabolism.  相似文献   

18.
Administration of allylisopropylacetamide (AIA) or CCl4 to rats previously treated with phenobarbital leads to a rapid decrease in cytochrome P450 within 1 hr. The amount of cytochrome b5 and NADPH cytochrome c reductase in liver microsomes remains unchanged following AIA treatment. In contrast, CCl4 administration causes a decrease in total microsomal protein thus leading to a net loss in cytochrome b5 and NADPH cytochrome c reductase. By using 3H-δ-aminolevulinic acid to label microsomal cytochrome P450 heme, the effect of AIA and CCl4 on this cytochrome was shown to be caused by destruction of preexisting CO-binding pigment and not from inhibition of synthesis. In addition, the breakdown products of cytochrome P450 heme accumulate in the liver after AIA or CCl4 treatment.  相似文献   

19.
Cytochrome P-450 substrate interactions were studied with cytochrome P-450 partially purified from livers of untreated, phenobarbital-treated, benzo[a]pyrene-treated and caffeine-treated rats. Partial inhibition of aminopyrine N-demethylase in presence of in vitro caffeine observed with intact microsomes was further investigated in a reconstituted system composed of partially purified cytochrome c reductase. Caffeine addition (in vitro) to partially purified cytochrome P-450 altered the hexobarbital, aniline and ethylisocyanide induced spectral change, and decreased NADPH oxidation in presence of substrates aminopyrine and acetanilide. NADPH oxidation was found to be increased in presence of aminopyrine and unaltered in presence of acetanilide in reconstituted system having partially purified cytochrome P-450 from caffeine-treated rats. Our studies suggest that caffeine acts as a true modifier of cytochrome P-450 and is possibly responsible for the formation of abortive complexes with aminopyrine.  相似文献   

20.
The enzymatic oxidation of tetrachloro-1,4-hydroquinone (1,4-TCHQ), resulting in covalent binding to protein of tetrachloro-1,4-benzoquinone (1,4-TCBQ), was investigated, with special attention to the involvement of cytochrome P-450 and reactive oxygen species. 1,4-TCBQ itself reacted very rapidly and extensively with protein (58% of the 10 nmol added to 2 mg of protein, in a 5-min incubation). Ascorbic acid and glutathione prevented covalent binding of 1,4-TCBQ to protein, both when added directly and when formed from 1,4-TCHQ by microsomes. In microsomal incubations as well as in a reconstituted system containing purified cytochrome P-450b, 1,4-TCHQ oxidation and subsequent protein binding was shown to be completely dependent on NADPH. The reaction was to a large extent, but not completely, dependent on oxygen (83% decrease in binding under anaerobic conditions). Inhibition of cytochrome P-450 by metyrapone, which is also known to block the P-450-mediated formation of reactive oxygen species, gave a 80% decrease in binding, while the addition of superoxide dismutase prevented 75% of the covalent binding, almost the same amount as found in anerobic incubations. A large part of the conversion of 1,4-TCHQ to 1,4-TCBQ is apparently not catalyzed by cytochrome P-450 itself, but is mediated by superoxide anion formed by this enzyme. The involvement of this radical anion is also demonstrated by microsomal incubations without NADPH but including the xantine/xantine oxidase superoxide anion generating system. These incubations resulted in a 1.6-fold binding as compared to the binding in incubations with NADPH but without xantine/xantine oxidase. 1,4-TCHQ was shown to stimulate the oxidase activity of microsomal cytochrome P-450. It is thus not unlikely that 1,4-TCHQ enhances its own microsomal oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号