首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cytochrome P-450 from liver microsomes of phenobarbital-treated rabbits catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) when combined with NADPH and NADPH-cytochrome P-450 reductase. Cytochromes P-450B1 and P-448 from liver microsomes of untreated rabbits were less active. Triton X-100 accelerated the reaction. Unlike anaerobic dehalogenation of halothane in microsomes, the major product was 2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene was negligible. These products were not detected under aerobic conditions, and dehalogenation activity was inhibited by carbon monoxide, phenyl isocyanide and metyrapone.  相似文献   

2.
To study the modulation of the reductive metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by microsomal cytochrome b5, formation of 2-chloro-1,1,1-trifluoroethane (CTE) and 2-chloro-1,1-difluoroethylene (CDE), major reduced metabolites of halothane, was analyzed in vivo and in vitro. Rats were pretreated with both malotilate (diisopropyl-1,3-dithiol-2-ylidenemalonate) and sodium phenobarbital (malotilate-treated rats) or only with sodium phenobarbital (control rats). The microsomes of malotilate-treated rats had significantly more cytochrome b5 than the controls, whereas the cytochrome P-450 content was not different between the two groups. At the end of 2-h exposure to 1% halothane in 14% oxygen, the ratio of CDE to CTE in arterial blood was significantly higher in malotilate-treated rats than in the controls. Under anaerobic conditions, the formation of CDE and the ratio of CDE to CTE were significantly greater in microsomal preparations of malotilate-treated rats than those of the controls. In a reconstituted system containing cytochrome P-450PB purified from rabbit liver, addition of cytochrome b5 to the system enhanced the formation of CDE and increased the ratio of CDE to CTE. These results suggested that cytochrome b5 enhances the formation ratio of CDE to CTE by stimulating the supply of a second electron to cytochrome P-450, which might reduce radical reactions in the reductive metabolism of halothane.  相似文献   

3.
Hydrochlorofluorocarbons (HCFCs) that are structural analogues of the anesthetic agent halothane may follow a common pathway of bioactivation and formation of adducts to cellular targets of distinct tissues. Exposure of rats to a single dose of HCFC 123 (2,2-dichloro- 1,1,1-trifluoroethane) or its structural analogue halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in vivo resulted in the formation of one prominent trifluoroacetylated protein adduct (TFA-protein adduct) in the heart. In contrast, a variety of distinct TFA-protein adducts were formed in the liver and the kidney of the same animals. The TFA-protein adduct in the heart was processed rapidly; t1/2 of the intact TFA-protein adduct was less than 12 h.  相似文献   

4.
NADPH reduced rabbit liver microsomal enzymes catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) to produce CF2CHCl and CF3CH2Cl. Anaerobic dehalogenation was optimal at pH7.4 and was blocked by either oxygen or carbon monoxide. The degree of inhibition of anaerobic dehalogenation by carbon monoxide was closely correlated to the proportion of carbon monoxide complex of cytochrome P450. Anaerobic dehalogenation was enhanced by pretreatment of the animals with phenobarbital but not with methylcholanthrene.  相似文献   

5.
Numerous xenobiotics are known to be bioactivated and to covalently bind to proteins, but the resulting amino acid adducts (AAAs) are unknown. In this study the AAAs of twelve 14C-labeled aliphatic halides were examined after formation in an in vitro microsomal system. After exhaustive solvent extraction of the precipitated microsomal protein, the AAAs were isolated by Pronase digestion, followed by filtration through a 500 mol. wt. exclusion membrane. The liberated AAAs were applied to a constant flow DC-4A cation exchange column, resolved by stepwise buffer elution, collected and counted for radioactivity. Column recovery for applied radioactivity was 100 ± 4%. Generally, 1–4 different AAAs (defined by eluting radioactivity) were resolved, with each organohalogen displaying a characteristic elution profile. Methyl iodide, trichloroethylene and 1,2-dichloroethylene had a single major AAA while bromotrichloromethane, 1,2-dibromoethane, 1,1,1-trichloroethane, 1,2-dichloroethane, 1,1,2-trichloroethane, 2-bromo-2-chloro-1,1,1-trifluoroethane, chloroform and carbon tetrachloride had up to 4 AAAs or more, indicating combinations of binding site(s) and reactive intermediate(s). The single AAA formed following incubation of methyl iodide with the microsomes was identified as S-methylcysteine. Thus, this method appears capable of resolving binding sites and is the initial isolation step for identifying specific adducts to proteins.  相似文献   

6.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

7.
Orthophosphate is rapidly transported into cultured cells and subsequently incorporated into numerous compounds. A high-performance liquid chromatographic method that enables the measurement of 32Pi incorporation into acid-soluble metabolites in cultured cells treated with exogenous 32Pi is described. Baseline resolution and quantitative recovery of 12 ribonucleotides are accomplished in less than 75 min. In cultured, beating rat heart cells, the concentration and extent of labeling by 32Pi of most phosphorylated metabolites were unchanged in cells treated with the anesthetic halothane (2-bromo-2-chloro-1,1,1-trifluoroethane). The method is generally applicable to the investigation of phosphate transport and incorporation by numerous cell types under various experimental conditions.  相似文献   

8.
A simple and sensitive gas chromatographic method for the determination of 2-chloro-1, 1-difluoroethylene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE), two highly volatile metabolites of halothane, in blood, liver and isolated hepatic microscomes is described. The entire head-space in equilibrium with a known volume or weight of the sample is injected into the gas chromatograph equipped with a flame ionization detector. Quantification is accomplished with standards prepared by fortifying blank samples with known concentrations of CDE and CTE which are treated under the same conditions as the samples. Detection limits for CDE and CTE were 2 pmole/ml in blood and 10 pmole/g in liver and the mean relative standard deviations are no greater than ± 6% except for CTE in hepatic microsomes (± 9%). A preliminary study of blood CDE and CTE levels in humans anesthetized with halothane is reported.  相似文献   

9.
The effect of diet on carbon tetrachloride metabolism   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Blood and liver concentrations of carbon tetrachloride were measured, at intervals after an oral dose, in rats given stock and protein-free diets. The values did not correlate with the resistance to poisoning found in the rats on protein-free diets. 2. The metabolism of carbon tetrachloride to carbon dioxide in vivo and in liver microsomal preparations was depressed in animals given protein-free diets. 3. Rats given a single dose of DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] were highly sensitive to carbon tetrachloride poisoning. The livers of such animals had an increased microsomal protein content and greatly increased microsomal activity in the demethylation of Pyramidon (aminopyrine) and in the conversion of 14CCl4 into 14CO2. 4. The incorporation of [14C]leucine into protein by liver slices was depressed by carbon tetrachloride. This effect was decreased by addition of SKF525A (2-diethylaminoethyl 2,2-diphenyl-2-propylacetate) and in slices from rats given protein-free diets. It is suggested that the toxicity of carbon tetrachloride is closely linked to its metabolism.  相似文献   

10.
Hydrochlorofluorocarbons (HCFCs) have been identified as chemical replacements of the widely used chlorofluorocarbons (CFCs) that are implicated in stratospheric ozone depletion. Many HCFCs are structural analogues of the anesthetic agent halothane and may follow a common pathway of biotransformation and formation of adducts to protein-centered and other cellular nucleophiles. Exposure of rats to a single dose of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or of the candidate CFC substitute HCFC 123 (2,2-dichloro-1,1,1-trifluoroethane) led to the formation of trifluoroacetylated protein adducts (CF3CO-proteins) not only in the liver, but also in the kidney as a novel target tissue for protein trifluoroacetylation. CF3CO-proteins in the kidney amounted to about 5% of those formed in the liver of the same animal. The amount of CF3CO-proteins formed within the kidney was roughly reflected by the capacity of metabolism of halothane or HCFC 123 by rat kidney microsomes in vitro which amounted to about 10% of that observed with liver microsomes. By immunohistochemistry, CF3CO-proteins in the kidney were mainly localized in the tubular segments of the cortex. In the liver, the density of CF3CO-proteins decreased from the central vein towards the portal triad. In vitro incubation of rat liver microsomes with halothane or HCFC 123 resulted in extensive formation of CF3CO-proteins and reproduced faithfully the pattern of liver CF3CO-proteins obtained in vivo. CF3CO-proteins generated in vitro were immunochemically not discernible from those generated in vivo. Glutathione (5 mM) and cysteine (5 mM) virtually abolished CF3CO-protein formation; the release of Br- from halothane and Cl- from HCFC 123 was reduced to much lesser a degree. S-Methyl-glutathione, N-acetyl-cysteine, methionine, and N-acetyl-methionine only slightly affected the formation of CF3CO-proteins or metabolism of either substrate. The data suggest that metabolism and concomitant CF3CO-protein formation of halothane or of candidate CFC replacements like HCFC 123 is not restricted to the liver but also takes place in the kidney. Furthermore, an in vitro system for CF3CO-protein formation has been developed and used to show that protein-centered and glutathione-centered nucleophilic sites compete for intermediates of metabolism of halothane or of HCFC 123.  相似文献   

11.
The rate of superoxide generation of guinea pig intraperitoneal neutrophils by a chemotactic peptide or 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased by 2-bromo-2-chloro-1,1,1,-trifluoroethane (halothane), an inhalation anesthetic. This increase was inhibited by 1-(5-isoquinolinesulfonyl)methylpiperazine dihydrochloride (H-7), a specific inhibitor of Ca2+- and phospholipid-dependent protein kinase C (PKC). Halothane was found to significantly activate partially purified PKC. The activation required phosphatidylserine (PS) and Ca2+. Dioleoylglycerol- or TPA-activated PKC activity was further increased by halothane. The cytoplasmic proteins of guinea pig neutrophils phosphorylated by halothane-activated PKC were similar to those phosphorylated by PMA-activated PKC. The phosphorylation of a 48 kDa protein, a phosphorylated protein required for NADPH oxidase activation, was also increased by halothane. These data suggest that the increase of superoxide production by halothane is correlated with its activation of PKC.  相似文献   

12.
Formation of Br? and, under certain conditions also F? ions has been observed in the radiation chemically induced one-electron reduction of the anesthetic halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in aqueous solutions. The initial step is the release of Br? and formation of the 2-chloro-1,1,1-trifluoroethyl radical. The latter can react via competing pathways including H-atom abstraction, addition of molecular oxygen and further reduction by an antioxidant. All of these three competitive routes lead to different product patterns. High yields of F? ions are observed under anaerobic conditions in the presence of antioxidants such as ascorbate, propylgallate, etc. The fluoride elimination is strongly pH-dependent and seems to occur in various steps after initiation through reduction of the (CF3CHCl) radical. The implication for biochemical studies on the metabolism of halothane under different oxygen concentrations is discussed.  相似文献   

13.
1. The general features of the reaction by which carbon tetrachloride stimulates lipid peroxidation have been elucidated in rat liver microsomal suspensions and in mixtures of microsomes plus cell sap. The production of lipid peroxides has been correlated with malonaldehyde production in the systems used. 2. The stimulation of malonaldehyde production by carbon tetrachloride requires a source of reduced NADP(+) and is dependent on the extent of the endogenous peroxidation of the microsomal membranes: if extensive endogenous peroxidation occurs during incubation then no stimulation by carbon tetrachloride is apparent. 3. The stimulation of malonaldehyde production by carbon tetrachloride has been shown to be proportional to the square root of the carbon tetrachloride concentration in the incubation mixture. It is concluded that the stimulation of malonaldehyde production by carbon tetrachloride results from an initiation process that is itself dependent on the homolytic dissociation of carbon tetrachloride to free-radical products. 4. The increased production of malonaldehyde due to carbon tetrachloride is accompanied by a decreased activity of glucose 6-phosphatase in rat liver microsomal suspensions. 5. The relative activities of bromotrichloromethane, fluorotrichloromethane and chloroform have been evaluated in comparison with the effects of carbon tetrachloride in increasing malonaldehyde production and in decreasing glucose 6-phosphatase activity. Bromotrichloromethane was more effective, and fluorotrichloromethane and chloroform were less effective, than carbon tetrachloride in producing these two effects. It is concluded that homolytic bond fission of the halogenomethanes is a requisite for the occurrence of the two effects observed in the endoplasmic reticulum.  相似文献   

14.
The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer's disease, Parkinson's disease and Huntington's disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.  相似文献   

15.
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.  相似文献   

16.
Alterations of catalytic activities of the microsomal glucose-6-phosphatase system were examined following either ferrous iron- or halothane (CF3CHBrCl) and carbon tetrachloride (CCl4) free-radical-mediated peroxidation of the microsomal membrane. Enzyme assays were performed in native and solubilized microsomes using either glucose 6-phosphate or mannose 6-phosphate as substrate. Lipid peroxidation was assessed by the amounts of malondialdehyde equivalents formed. Regardless of whether the experiments were performed in the presence of NADPH/Fe3+, NADPH/CF3CHBrCl, or NADPH/CCl4, with the onset of lipid peroxidation, mannose-6-phosphatase activity of the native microsomes increased immediately, while further alterations in catalytic activities were only detectable when lipid peroxidation had passed characteristic threshold values: above 2 nmol malondialdehyde/mg microsomal protein, glucose-6-phosphatase activity of the native microsomes was lost, and at 10 nmol malondialdehyde/mg microsomal protein, glucose-6-phosphatase and mannose-6-phosphatase activity of the solubilized microsomes started to decline. It is concluded that the latter alterations are due to an irreversible damage of the phosphohydrolase active site of the glucose-6-phosphatase system, while the changes observed at earlier stages of microsomal lipid peroxidation may also reflect alterations of the transporter components of the glucose-6-phosphatase system. Virtually no changes in the catalytic activities of the glucose-6-phosphatase system occurred under anaerobic conditions, indicating that CF3CHCl and CCl3 radicals are without direct damaging effect on the glucose-6-phosphatase system. Further, maximum effects of carbon tetrachloride and halothane on lipid peroxidation and enzyme activities were observed at an oxygen partial pressure (PO2) of 2 mmHg, providing additional evidence for the crucial role of low PO2 in the hepatotoxicity of both haloalkanes.  相似文献   

17.
Inhaled anesthetic molecule occupancy of a protein internal cavity depends in part on the volumes of the guest molecule and the host site. Current algorithms to determine volume and surface area of cavities in proteins whose structures have been determined and cataloged make no allowance for shape or small degrees of shape adjustment to accommodate a guest. We developed an algorithm to determine spheroid dimensions matching cavity volume and surface area and applied it to screen the cavities of 6,658 nonredundant structures stored in the Protein Data Bank (PDB) for potential targets of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane). Our algorithm determined sizes of prolate and oblate spheroids matching dimensions of each cavity found. If those spheroids could accommodate halothane (radius 2.91 A) as a guest, we determined the packing coefficient. 394,766 total cavities were identified. Of 58,681 cavities satisfying the fit criteria for halothane, 11,902 cavities had packing coefficients in the range of 0.46-0.64. This represents 20.3% of cavities large enough to hold halothane, 3.0% of all cavities processed, and found in 2,432 protein structures. Our algorithm incorporates shape dependence to screen guest-host relationships for potential small molecule occupancy of protein cavities. Proteins with large numbers of such cavities are more likely to be functionally altered by halothane.  相似文献   

18.
The alkaline single cell gel electrophoresis (comet) assay was applied to study genotoxic properties of two inhalation anesthetics-halothane and isoflurane-in human peripheral blood lymphocytes (PBL). The cells were exposed in vitro to either halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether) at concentrations 0.1-10 mM in DMSO. The anesthetics-induced DNA strand breaks as well as alkali-labile sites were measured as total comet length (i.e., increase of a DNA migration). Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner. In experiments conducted at two different electrophoretic conditions (0. 56 and 0.78 V/cm), halothane was able to increase DNA migration to a higher extent than isoflurane. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA degradation due to cell death. For this reason a contribution of toxicity in the observed effects was examined. We tested whether the exposed PBL were able to repair halothane- and isoflurane-induced DNA damage. The treated cells were incubated in a drug-free medium at 37 degrees C for 120 min to allow processing of the induced DNA damage. PBL exposed to isoflurane at 1 mM were able to complete repair within 60 min whereas for halothane a similar result was obtained at a concentration lower by one order of magnitude: the cells exposed to halothane at 1 mM removed the damage within 120 min only partly. We conclude that the increase of DNA migration induced in PBL by isoflurane at 1 mM and by halothane at 0.1 mM was not a result of cell death-associated DNA degradation but was caused by genotoxic action of the drugs. The DNA damage detected after the exposure to halothane at 1 mM was in part a result of DNA fragmentation due to cell death.  相似文献   

19.
The metabolism of carbon tetrachloride to chloroform, carbon monoxide, carbon dioxide, and phosgene, as well as carbon tetrachloride-induced lipid peroxidation was studied in control, 2-propanol-, and phenobarbital-treated rats. Different effects were observed following 2-propanol and phenobarbital treatments. 2-Propanol treatment increased phosgene formation but had no effect on carbon tetrachloride-induced lipid peroxidation, while phenobarbital treatment had no effect on phosgene formation and potentiated carbon tetrachloride-induced lipid peroxidation. These data suggest that 2-propanol and phenobarbital treatments alter either the activity or composition of constitutive forms of cytochrome P-450 responsible for the metabolism of carbon tetrachloride and, in addition, suggest that phosgene may play a role in 2-propanol potentiation of carbon tetrachloride hepatotoxicity.  相似文献   

20.
The effects of ether, chloroform, and halothane on calcium accumulation and ATPase activity of rat heart microsomes and mitochondria as well as on myofibrillar ATPase activity were investigated. Chloroform and halothane depressed microsomal and mitochondrial calcium uptake and binding in a parallel fashion. Ether decreased microsomal calcium binding and mitochondrial calcium uptake to varying degrees, while mitochondrial calcium binding was slightly enhanced. Whereas ether had no effect, chloroform depressed microsomal and mitochondrial total APTase activities and halothane decreased microsomsl ATPase and slightly stimulated mitochondrial total ATPase activities. Halothane was found to depress myofibrillar Mg2+-ATPase and ether was capable of decreasing myofibrillar Ca2+-ATPase. Chloroform was seen to inhibit both myofibrillar enzymes. These results suggest that the cardiodepressant actions of volatile anesthetic agents may be due to alterations in the calcium accumulating abilities of microsomal and mitochondrial membranes while direct myofibrillar effects may contribute to the depression seen with relatively higher concentrations of anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号