首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antitumor agent carminic acid 1a does not bind to DNA but nicks it slowly, more rapidly when reduced in situ, and still more rapidly when prereduced at the quinone moiety. The nicking process requires oxygen and is selectively inhibited by (i) superoxide dismutase, (ii) catalase, and (iii) free radical scavengers indicating the involvement of O2?, H2O2, and OH., respectively. The intermediacy of OH. was supported by spin trapping with N-t-butyl-α-phenylnitrone and epr of the radical produced via the carminic acid semiquinone. The single strand scission of DNA by carminic acid requires two adjacent hydroquinone moieties in the chromophore since reduced methyl tetra-O-methylcarminate 1b is without effect although it binds weakly to DNA. Polarographic redox potentials for the reversible (2e, 2H+) reduction of 1a and 1b are ?0.736 ± 0.003 V and ?0.56 ± 0.010 V against SCE, respectively. The fact that daunorubicin and adriamycin produce more extensive DNA strand scission than carminic acid under comparable conditions of prereduction and on a molar basis is largely attributed to the assistance of intercalative binding afforded in the case of the anthracyclines.  相似文献   

2.
The copper(II) complex of the clinically used antitumor agent bleomycin (Blm) has cytotoxic as well as antitumor properties. To understand the relationship of the bleomycin ligand, copper bleomycin, and other possible metal complexes of this agent, kinetic studies of the formation of Cu(II)Blm, ligand substitution reactions of CuBlm with ethylenediaminetetraaletic acid, and the redox reaction of CuBlm with thiols have been completed and interpreted along with previous studies of the thermodynamic stability of Cu2+ with bleomycin. Cu(II)Bm is found to be kinetically and thermodynamically stable in ligand substitution processes and is only slowly reduced and dissociated by sulfhydryl reagents. The rate constant of reduction of the complex by 2-mercaptoethanol (2-ME) at pH 7.4 and 25 degrees C is 9.5 X 10(-3) M-1 sec-1, explaining the inhibition of Fe2+-dependent strand scission of DNA by Cu2+ in the presence of 2-ME. CuBlm forms in preference to Fe(II)Blm and cannot be reduced and dissociated rapidly enough by thiols to liberate Blm and form the reactive iron complex. In agreement with the observed chemical stability of CuBlm, it is also shown that the complex is stable in human plasma and in the presence of Ehrlich cells suspended in ascites fluid. Interestingly, little CuBlm enters these cells to carry out cytotoxic reactions. Finally, it is shown that both Cu2+ and Zn2+, at equivalent concentrations to Fe2+, effectively inhibit the strand scission of DNA by Fe(II)Blm plus oxygen. However, at substoichiometric amounts of Cu2+, the ferroxidase activity of Blm enables the drug to remain effective in the strand-scission reaction, despite the lowered Cu-free Blm/Fe2+ ratio. These results are discussed in light of the proposed mechanism of action of bleomycin.  相似文献   

3.
L M Fisher  R Kuroda  T T Sakai 《Biochemistry》1985,24(13):3199-3207
The association of the antitumor antibiotic bleomycin A2 with DNA has been investigated by employing several 2-substituted thiazole-4-carboxamides, structurally related to the cationic terminus of the drug. With a 5'-32P-labeled DNA restriction fragment from plasmid pBR322 as substrate, these compounds have been shown to inhibit bleomycin-induced DNA breakage. Analogues possessing 2'-aromatic substituents on the bithiazole ring were more potent inhibitors than those carrying 2'-aliphatic groups, e.g., the acetyl dipeptide A2. The degree of inhibition was similar at all scission sites on DNA, and inclusion of the analogues did not induce bleomycin cleavage at new sites. DNA binding of bithiazole derivatives has also been studied by two complementary topological methods. Two-dimensional gel electrophoresis using a population of DNA topoisomers and DNA relaxation experiments involving calf thymus DNA topoisomerase I and pBR322 DNA reveal that bleomycin bithiazole analogues unwind closed circular duplex DNA. The inhibition and unwinding studies together support recent NMR studies suggesting that both bleomycin A2 and synthetic bithiazole derivatives bind to DNA by an intercalative mechanism. The results are discussed in relation to the DNA breakage properties of bleomycin A2.  相似文献   

4.
Summary Plant cells are sensitive to the antibiotic bleomycin, a DNA damaging glycopeptide. A bleomycin resistance determinant, located on transposon Tn5 and functional in bacteria, has been cloned in a plant expression vector and introduced into Nicotiana plumbaginifolia using Agrobacterium tumefaciens. The expression of this determinant in plant cells confers resistance to bleomycin and allows selection of transformed plant cells.  相似文献   

5.
Light-induced nicking of deoxyribonucleic acid by cobalt(III) bleomycins   总被引:1,自引:0,他引:1  
C H Chang  C F Meares 《Biochemistry》1982,21(25):6332-6334
The anticancer drug bleomycin is a glycopeptide that causes strand scission of DNA both in vivo and in vitro. Cleavage of DNA by bleomycin has been studied extensively in vitro, with the findings that ferrous ion and molecular oxygen must be present and that addition of reducing agents greatly enhances the reaction. To date, only iron has been shown to be an effective metal cofactor for the cleavage of DNA by bleomycin. Here it is reported that two stable cobalt(III) complexes of bleomycin are strikingly effective in causing single-strand breaks (nicks) in supercoiled DNA in the presence of ultraviolet or visible radiation. For example, 366-nm light from an 18-W long-wavelength mercury lamp for 1 h causes 10(-6) M cobalt(III) bleomycin to completely convert supercoiled phi X174 DNA (10(-8) M DNA, 10(-4) M phosphate) into the nicked circular form. Furthermore, numerous alkali-labile sites are produced on the DNA during this treatment. The observed reactions are not caused by adventitious iron, and they occur only in the presence of cobalt(III) bleomycin and light.  相似文献   

6.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivity to camptothecin. To investigate the contribution of this residue to enzyme catalysis, we evaluated the effect of substituting His, Asp, or Ser for Asn-726 on yeast Top1p. Top1N726S and Top1N726D mutant proteins were resistant to camptothecin, although the Ser mutant was distinguished by a lack of detectable changes in activity. Thus, a basic residue immediately N-terminal to the active site tyrosine is required for camptothecin cytotoxicity. However, replacing Asn-726 with Asp or His interfered with distinct aspects of the catalytic cycle, resulting in cell lethality. In contrast to camptothecin, which inhibits enzyme-catalyzed religation of DNA, the His substituent enhanced the rate of DNA scission, whereas the Asp mutation diminished the enzyme binding of DNA. Yet, these effects on enzyme catalysis were not mutually exclusive as the His mutant was hypersensitive to camptothecin. These results suggest distinct mechanisms of poisoning DNA topoisomerase I may be explored in the development of antitumor agents capable of targeting different aspects of the Top1p catalytic cycle.  相似文献   

7.
《Inorganica chimica acta》1986,125(4):203-206
A new metal chelating moiety, 4-ethylamido [5,(2′- thienyl)-2-thiophene]imidazole iron(II) (1) was synthesized and showed antitumor activity in vitro. The bisthiophene moiety which sterically resembles the bithiazole units of bleomycin may allow us to probe further the mechanism of antitumor action by bleomycin. The cyclic voltammetry for the new compound 1 in DMSO showed a nearly reversible Fe3+/Fe2+ transition. The electron spin resonance spectrum consisted of a fairly broad band resonance centered at g = 2.00989, similar to that of a bleomycin-Fe2+ complex. The new compound 1 causes cleavage of double helical DNA without the requirement of an extra intercalating group.  相似文献   

8.
DNA methylation diminishes bleomycin-mediated strand scission   总被引:1,自引:0,他引:1  
Three DNA duplexes differing substantially in sequence were derived from pBR322 plasmid DNA and supercoiled SV40 DNA by digestion with appropriate restriction endonucleases. Following treatment with the restriction methylase HhaI (recognition sequence: GCGC) or HhaI and HpaII (CCGG), the unmethylated and methylated DNAs were compared as substrates for the antitumor agent bleomycin. Bleomycin-mediated strand scission was shown to diminish substantially at a number of sites in proximity to the methylated cytidine moieties, especially where multiple sites had been methylated within a DNA segment of limited size. Detailed analysis of the DNA substrates revealed that both strands of DNA within a methylated region became more refractory to cleavage by bleomycin and that the protective effect could extend as many as 14 base pairs in proximity to the 5-methylcytidine moieties. Among the methylated DNA segments that became more resistant to bleomycin cleavage was a HpaII site of SV40 DNA, methylation of which has previously been shown to diminish the synthesis of the major late viral capsid protein following microinjection into Xenopus laevis oocytes. Study of the cleavage reaction at varying salt levels suggested that diminished bleomycin strand scission may be due, at least in part, to local conformational changes of the DNA to Z form (or other non-B-form structures). The results are generally consistent with the hypothesis that one mechanism for the expression of selective therapeutic action by certain DNA damaging agents could involve the recognition of specific methylation patterns.  相似文献   

9.
The glycopeptide, bleomycin, binds metal ions including Cu2+. It is the copper complex of this material that is isolated from Streptomyces verticillus. Both free ligand and copper complex are excellent antitumor agents in animals. The biochemical and pharmacological relationship between these compounds has not been established. The present study begins an analysis of the chemistry and biochemistry of copper-bleomycin with structural and equilibrium properties of the complex. Potentiometric and fluorometric titrations of bleomycin confirm three acidic groups with pKa values of 7.50, 4.93, and 2.72. The conjugate nitrogen bases of these groups, comprise three of the binding sites for Cu2+ according to similar titrations of copper-bleomycin. The fourth is a conjugate base of an acid with a very large pKa that cannot be measured by these techniques. The participation of a fourth such group is inferred from both proton release studies of the binding of metal and ligand above pH 8 and from several studies of the thermodynamic stability of copper bleomycin. At low pH binding of copper to bleomycin occurs in two steps, as observed by several independent techniques which monitor either the metal or the ligand. Log stability constants for the reactions Cu2+ + HkBlm ? CuHk-nBlm + nH+ and CuHk-nBlm ? CuHk-n-rBlm + rH+ are 1.32 and ?4.31, respectively, with n of 2.21 in the first equation and r of 2.07 in the second equation. The derived logarithm of the pH independent stability constant for copper bleomycin multiplied by the protonation constant for the unknown fourth ligand in the binding site is 12.16. This agrees closely with values obtained from measurements of conditional formation constants. One of the groups which binds in the second reaction is the substituted pyrimidine.  相似文献   

10.
The interaction of bleomycin A2 with rat lung microsomes results in bleomycin-mediated DNA chain breakage due to the mixed-function oxidase catalyzed activation of bleomycin. This study demonstrates that the addition of exogenous Fe3+ significantly enhances the bleomycin-mediated cleavage of DNA deoxyribose, that the enhancing effect of Fe3+ is maximum when a 1:1 ratio of bleomycin to Fe3+ is achieved and that either NADPH or NADH can serve as pyridine cofactors for this reaction. Since the activation of bleomycin can be facilitated by iron in the Fe2+ form, these observations support the hypothesis that the mixed-function oxidase system may serve to maintain either adventitious or exogenous iron in the Fe2+ form. In the absence of DNA, the interaction of bleomycin with rat lung microsomes results in the self-inactivation of bleomycin, a reaction which is also enhanced by the addition of exogenous Fe3+. Thus, the microsomal mixed-function oxidase system represents an efficient biological system for the ‘activation-inactivation’ of bleomycin.  相似文献   

11.
A series of metalloporphyrins linked through basic chains to certain DNA interactive groups has been synthesized. Several of these agents reproduce the characteristic properties of the antitumor glycopeptide bleomycin, including the oxygen-mediated scission of DNA in the presence of thiols, antibiobic activity under aerobic conditions, and activity against human and animal tumor models. Initial screening by scission of PM2-CCC-DNA identified six of the compounds, including those bearing acridine and acodazole intercalating groups, as the most active. The specificity of the oxygen-mediated scission of a 139 base pair HindIII/NciI restriction fragment of pBR322 by these six selected agents was then determined and compared with the action of pancreatic DNase by densitometric scans. All six of these compounds produce uniform base and sequence neutral cleavage of the restriction fragment at each base site. The six active compounds bear either of two types of intercalators, 6-chloro-2-methoxyacridine or acodazole, and with linkages to the ferric binding domain of -NH(CH2)2-, -NH(CH2)3-, -NH(CH2)4-, or -NH(CH2)3NH(CH2)3- and either porphyrin or deuteroporphyrin moieties. Comparison of the Kassoc values for binding to calf thymus DNA suggests that the enhanced binding observed with the linker -NH(CH2)3NH(CH2)3- contributes to the efficiency of sequence neutral DNA scission and may be a factor in the relative anticancer activities of these agents. The iron porphyrins give no evidence of the production of base propenals in DNA degradation, and the autoradiograms clearly indicate that a phosphate group is attached to the 5' end of the oligomer. The scission is partially suppressible by catalase and superoxide dismutase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Camptothecin specifically interacted with closed superhelical circular SV40 DNA during incubation in 1.0 M NaCl at 37 degrees C and induced an alkali-labile linkage in the E strand. No interaction occurred in the reaction mixture containing 0.1 M NaCl, or at 4 degrees C. As camptothecin did not affect linear SV40 DNA, the superhelical structure of DNA appeared to be essential. The site of the alkali-labile linkage induced in SV40 DNA I through interaction with camptothecin was near the origin of replication on the basis of the results of experiments with restriction enzymes. Neither sulfhydryl reagents nor EDTA affected the interaction between camptothecin and SV40 DNA I, so the action of camptothecin is different from those of antitumor antibiotics, bleomycin or neocarzinostatin. Analysis of the s20,0w value of SV40 DNA I after the interaction with camptothecin and the sedimentation profiles of DNA after heating in the reaction mixture indicated that the interaction between camptothecin and SV40 DNA I was different from those of intercalating or alkylating agents such as ethidium bromide and methylmethanesulfonate. Replacement of the OH group at C-20 in the E ring of camptothecin by H-, CH3-, and Cl- resulted in the reduction, in this order, of the potency for interaction with SV40 DNA I to induce an alkali-labile linkage.  相似文献   

13.
Copper-dependent cleavage of DNA by bleomycin   总被引:1,自引:0,他引:1  
DNA strand scission by bleomycin in the presence of Cu and Fe was further characterized. It was found that DNA degradation occurred readily upon admixture of Cu(I) or Cu(II) + dithiothreitol + bleomycin, but only where the order of addition precluded initial formation of Cu(II)--bleomycin or where sufficient time was permitted for reduction of the formed Cu(II)--bleomycin to Cu(I)--bleomycin. DNA strand scission mediated by Cu + dithiothreitol + bleomycin was inhibited by the copper-selective agent bathocuproine when the experiment was carried out under conditions consistent with Cu chelation by bathocuproine on the time scale of the experiment. Remarkably, it was found that the extent of DNA degradation obtained with bleomycin in the presence of Fe and Cu was greater than that obtained with either metal ion alone. A comparison of the sequence selectivity of bleomycin in the presence of Cu and Fe using 32P-end-labeled DNA duplexes as substrates revealed significant differences in sites of DNA cleavage and in the extent of cleavage at sites shared in common. For deglycoblemycin and decarbamoylbleomycin, whose metal ligation is believed to differ from that of bleomycin itself, it was found that the relative extents of DNA cleavage in the presence of Cu were not in the same order as those obtained in the presence of Fe. The bleomycin-mediated oxygenation products derived from cis-stilbene were found to differ in type and amount in the presence of added Cu vs. added Fe. Interestingly, while product formation from cis-stilbene was decreased when excess Fe was added to a reaction mixture containing 1:1 Fe(III) and bleomycin, the extent of product formation was enhanced almost 4-fold in reactions that contained 5:1, as compared to 1:1, Cu and bleomycin. The results of these experiments are entirely consistent with the work of Sugiura [Sugiura, Y. (1979) Biochem. Biophys. Res. Commun. 90, 375-383], who first demonstrated the generation of reactive oxygen species upon admixture of O2 and Cu(I)--bleomycin.  相似文献   

14.
2-Deaminoactinomycin D (3a) and 2-deamino-2-nitroactinomycin D (2a) were prepared in one step from actinomycin D (1a, AMD) by reaction with nitrous acid. New DNA-binding (calf-thymus) data obtained by difference uv and CD spectra and ΔTm were presented. In vitro cell growth inhibitory activity of CCRF-CEM cells was also reported. The 2-deamino analog, 3a, does not bind to DNA strongly nor by intercalation of its chromophore. However, some binding with DNA was indicated by CD which is attributed only to hydrogen bondings of the peptides with the DNA helix; the affinity for binding is in the order 1a ? 2a > 3a. The 2-nitro analog, 2a, is a more potent agent against CCRF-CEM cells than the 2-deaminoactinomycin D, 3a; the potencies are in the order 1a > 2a ? 3a. Furthermore, the microsomes activate the analogs to free radical states which catalyze the production of superoxide, as indicated by electron paramagnetic resonance studies and oxygen consumption experiments.  相似文献   

15.
A new aminonaphthalimide platinum(IV) complex was developed by incorporating aminonaphthalimide, a DNA intercalator, into the platinum(IV) system. This complex displayed potent antitumor activities against all tested tumor cell lines in vitro and showed great potential in overcoming drug resistance of cisplatin. Moreover, it remarkably inhibited the growth of CT26 xenografts in BALB/c mice without severe side effects in vivo. Then, the compound exhibited a dual DNA damage antitumor mechanism that it could interact with DNA in tetravalent form via the naphthalimide group to cause DNA lesion, and the further liberation of platinum(II) complex after reduction would induce remarkable secondary damage to DNA. Meanwhile, it caused cell apoptosis through an intrinsic apoptosis pathway by up-regulating the expression of caspase 3 and caspase 9.  相似文献   

16.
17.
Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.  相似文献   

18.
Upon irradiation with 365-nm light, copper(II)-camptothecin significantly produced single- and double-strand breaks of DNA and also induced a marked inactivation of bacteriophage. The nucleotide sequence analysis exhibited considerably random DNA cleavage. The DNA strand scission by the camptothecin-Cu(II)-UV light system, as well as the phage inactivation, was strongly suppressed by bathocuproine and catalase, indicating participation of cuprous species and hydrogen peroxide in the reaction. The present results suggest that (1) Cu(II) ion may play an important role as a cofactor in antitumor action of camptothecin and (2) the combination of copper-camptothecin plus long-wave ultraviolet light is useful against certain cancer treatment as a new photochemotherapy.  相似文献   

19.
Five oxaliplatin-typed platinum complexes containing trans-1R, 2R-diaminocyclohexane chelating platinum cores, characteristic of linear or branched alkoxycarboxylates as leaving groups, were biologically evaluated. These compounds showed higher antitumor activity, lower toxicity in vivo than cisplatin or oxaliplatin. And the results revealed that the antitumor activity and interaction with DNA of these compounds were highly related to the nature of leaving groups. Among these complexes, 5a, cis-(trans-1R, 2R-diaminocyclohexane) bis (2-tert-butoxyacetate) platinum(II), showed the highest antitumor activity and the lowest toxicity.  相似文献   

20.
The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (K d ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号