首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

2.
Signalling process of water stress‐induced abscisic acid (ABA) accumulation was investigated in maize (Zea mays L.) leaf and root tissues. Potent free‐radical scavengers and reducing agents, N‐acetyl cysteine (NAC) and cystein (Cys), significantly inhibited or nearly completely blocked dehydration‐induced ABA accumulation. Dithiothreitol (DTT), a reducing agent but not a free‐radical scavenger, also significantly inhibited such accumulation whereas solely free‐radical scavengers, dimethyl sulphoxide (DMSO) and melatonin (Mela), had no effects. Moreover, water stress‐induced ABA accumulation was not affected either by free radicals, such as superoxide anion and hydrogen peroxide, or by oxidants such as KIO4. These observations suggest that the blocking of water stress‐induced ABA accumulation resulted from the reducing effect, rather than from anything associated with free radicals. The disulphide bond might be crucial to the reactivity of some signal element(s) in the signalling process of water stress‐induced ABA accumulation. To test the hypothesis, we used a sulfhydryl modifier, iodoacetamide (IOA), and found that it nearly totally blocked the water stress‐induced ABA accumulation. Furthermore, an impermeable sulfhydryl modifier, p‐chloromercuriphenylsulphonic acid (PCMBS), could also inhibit the water stress‐induced ABA accumulation in the leaf tissues. These results indicate that water stress‐perception protein(s) or receptor(s) may be located on the plasmalemma and a sulfhydryl group in the extracellular domain is critical to the reactivity of the speculated water stress receptors. Cys, DTT and IOA did not lead to a decrease of the baseline ABA level, i.e. in non‐stressed roots. Result indicates that their blocking of water stress‐induced ABA accumulation occurred upstream of the ABA biosynthesis pathway, i.e. in the signalling process that initiates such accumulation.  相似文献   

3.
Abstract

Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe3+/O2) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

4.
S-Nitrosocompounds are formed when aqueous solutions of cysteine or glutathione are exposed to ultrasound (880 kHz) in air. The yield of the S-nitrosocompounds was as high as 10% for glutathione and 4% for cysteine of the initial thiol concentrations (from 0.1 to 10 mM) in the aqueous solutions. In addition to the formation of S-nitrosocompounds, thiol oxidation to disulfide forms was observed. After the oxidation of over 70% of the sulfhydryl groups, formation of peroxide compounds as well as cysteic acid derivatives was recorded. The formation of the peroxide compounds and peroxide radicals in the ultrasound field reduced the yield of S-nitrosocompounds. S-Nitrosocompounds were not formed when exposing low-molecular-weight thiols to ultrasound in atmospheres of N2 or CO. In neutral solutions, ultrasound-exposed cysteine or glutathione released NO due to spontaneous degradation of the S-nitrosocompounds. N2O3, produced due to the spontaneous degradation of the S-nitrosocompounds in air, nitrosylated sulfhydryl groups of glutathione manifested in the appearance of new absorption bands at 330 and 540 nm. The nitrogen compounds formed in an ultrasound field modified the sulfhydryl groups of apohemoglobin and serum albumin. The main target for ultrasound-generated oxygen free radicals were cystine residues oxidized to cysteic acid residues.  相似文献   

5.
The effect of CMNQ was studied on mitochondria isolated from S-180 ascites tumor cells. It was found that the primary metabolic event upon addition of CMNQ to S-180 mitochondria was a stimulation of oxygen uptake. The oxygen utilization rate was maximized at about 50 nmoles CMNQ/mg protein; at doses higher than this, inhibition of respiration was observed relative to the stimulation of respiration produced by CCCP. It was also up to 50 nmoles CMNQ/mg protein. S-180 ATPase activity is stimulated maximally by 125 nmoles CMNQ/mg protein; at doses higher than this, slight inhibition of the ATPase activity relative to the stimulation produced by CCCP is seen. In vivo treatment of CMNQ to tumor bearing animals leads to a significant reduction of in vitro S-180 cellular respiration rates. The data presented in this work coupled with previously published reports involving CMNQ support the proposal for a mitochondrial level of action for this bioreductive alkylating antineoplastic agent.  相似文献   

6.
We have examined the interaction of omeprazole, a gastric antisecretory agent, with endogenous or exogenous sulfhydryl compounds in isolated rabbit gastric glands. The glands exposed to omeprazole (2 μM for 50 min) could recover acid secretory response to dibutyryl-cAMP upon addition of dithiothreitol, cysteine or glutathione. Washing the omeprazole-exposed glands free of the extracellular drug also led to a similar recovery of the acid secretory response. Depletion of cellular glutathione with 2-cyclohexen-1-one had no considerable effect on the secretory response of the glands to dibutyryl-cAMP, but prevented the reversal of the antisecretory effect of omeprazole upon washing or adding exogenous cysteine. Also, the antisecretory potency of omeprazole increased several fold in the glutathione-depleted glands. These observations indicate that cellular glutathione is essential to reactivate the omeprazole-modified enzyme(s), possibly (H+ + K+)-ATPase, in acid secretory process and led us to propose that omeprazole is an agent reacting with sulfhydryl groups.  相似文献   

7.
The uncoupler dinitrobromoacetoxyethoxyphenol (DNBP) has been synthesized and found to label rapidly and specifically a small number of cysteine residues in rat liver mitochondria. The labeling reaction was essentially complete in a few minutes. Only eight of the mitochondrial polypeptide bands, of MW 97, 58, 52, 43, 30, 26, 22, 13 × 103, respectively, as separated by SDS gel electrophoresis, were found to carry the radioactive label. In each case, the label which survived acid hydrolysis was covalently bound to cysteine residues through alkylation reaction. Under the present experimental conditions, only 0.45 mole of the label was covalently bound to mitochondrial protein per mole of cytochrome aa3 and only 1 out of about 650 sulfhydryl groups was so labeled. Consideration of the specificity of the labeling and the observed time-dependence of DNBP-stimulated respiration suggests that the labeled protein molecules are either at or very close to the mitochondrial coupling sites and probably play an important role in the primary energy transduction process.  相似文献   

8.
The specific binding of GABA (γ-aminobutyric acid) agonist 3H-muscimol, to synaptic membranes from the rat brain showed a significant increase, when the membranous preparations were treated with a low concentration (10?4–10?5M) of mercurial sulfhydryl reagents such as p-chloromercuribenzoate and mercuric chloride. This activation in GABA receptor binding was bicuculline-sensitive, and was partially restored by subsequent treatments with 10 mM cysteine, penicillamine, or mercaptoethanol. Scatchard analysis of the binding revealed that this activation was due to the increase in the affinity of both high and low affinity bindings sites but not in the Bmax values. On the other hand, the treatment of synaptic membranes with hydrophilic sulfhydryl reagents such as N-ethylmaleimide and iodoacetate had no effect on the binding. These hydrophilic sulfhydryl reagents, however, induced an increase of the binding following the pretreatment of synaptic membranes with 0.01% Triton X-100 or 0.5 U/mg prot. of phospholipase A2 (EC 3.1.1.4.). These results suggest that mercurials-sensitive sulfhydryl groups, which are normally masked by membrane lipids, may play a modulating role in GABA receptor binding at central synapses.  相似文献   

9.
Tsyregma Li  Bruno Antonsson 《BBA》2008,1777(11):1409-1421
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAXoligo). We found that BAXoligo caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAXoligo also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAXoligo resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAXoligo-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAXoligo insertion into the OMM. Both BAXoligo- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H2O2 release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAXoligo but not by alamethicin. Thus, BAXoligo resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

10.
Ca2+ and inorganic phosphate-induced mitochondrial swelling and membrane protein thiol oxidation, which are associated with mitochondrial permeability transition, are inhibited by progressively decreasing the incubation medium pH between 7.2 and 6.0. Nevertheless, the detection of mitochondrial H2O2 production under these conditions is increased. Permeability transition induced by phenylarsine oxide, which promotes membrane protein thiol cross-linkage in a process independent of Ca2+ or reactive oxygen species, is also strongly inhibited in acidic incubation media. In addition, we observed that the decreased protein thiol reactivity with phenylarsine oxide or phenylarsine oxide-induced swelling at pH 6.0 is reversed by diethyl pyrocarbonate, in a hydroxylamine-sensitive manner. These results provide evidence that the inhibition of mitrochondrial permeability transition observed at lower incubation medium pH is mediated by a decrease in membrane protein thiol reactivity, related to the protonation of protein histidyl residues.  相似文献   

11.
Mitochondria undergo a permeability transition (PT), i.e., become nonselectively permeable to small solutes, in response to a wide range of conditions/compounds. In general, opening of the permeability transition pore (PTP) is Ca2+- and Pi-dependent and is blocked by cyclosporin A (CsA), trifluoperazine (TFP), ADP, and butylated hydroxytoluene (BHT). Gudz and coworkers have reported [7th European Bioenergetics Conference, EBEC Short Reports (1992)7, 125], however, that, under some conditions, BHT increases mitochondrial permeability via a process that may not share all of these characteristics. Specifically, they determined that the BHT-induced permeability transition was independent of Ca2+ and was insensitive to CsA. We have used mitochondrial swelling to compare in greater detail the changes in permeability induced by BHT and by Ca2+ plus Pi with the following results. (1) The dependence of permeability on BHT concentration is triphasic: there is a threshold BHT concentration (ca. 60 nmol BHT/ mg mitochondrial protein) below which no increase occurs; BHT enhances permeability in an intermediate concentration range; and at high BHT concentrations (> 120 nmol/mg) permeability is again reduced. (2) The effects of BHT depend on the ratio of BHT to mitochondrial protein. (3) Concentrations of BHT too low to induce swelling block the PT induced by Ca2+ and Pi. (4) The dependence of the Ca2+-triggered PT on Pi concentration is biphasic. Below a threshold of 50–100 M, no swelling occurs. Above this threshold swelling increases rapidly. (5) Pi levels too low to support the Ca2+-induced PT inhibit BHT-induced swelling. (6) Swelling induced by BHT can bestimulated by agents and treatments that block the PT induced by Ca2+ plus Pi. These data suggest that BHT and Ca2+ plus Pi, increase mitochondrial permeability via two mutually exclusive mechanisms.  相似文献   

12.
Pure singlet molecular oxygen (1O2) generated by thermal decomposition of the 3,3-(1,4-naphthylidene) dipropionate endoperoxide (NDPO2), inhibited respiration of isolated rat liver mitochondria supported by NADH-linked substrates or succinate, but not by N,N,N,N-tetramehyl-p-phenylene-diamine (TMPD)/ascorbate. Under the latter conditions, mitochondria treated with 2.7 mM NDPO2 exhibited a decrease in transmembrane potential () in manner dependent on NDPO2 exposure time. This process was sensitive to the mitochondrial permeability transition inhibitors EGTA, dithiothreitol, ADP, and cyclosporin A. The presence of deuterium oxide (D2O), that increases 1O2 lifetime, significantly enhanced NDPO2-promoted mitochondrial permeabilization. In addition, NDPO2-induced mitochondrial permeabilization was accompanied by DTT or ADP-sensitive membrane protein thiol oxidation. Taken together, these results provide evidence that mitochondrial permeability transition induced by chemically generated singlet oxygen is mediated by the oxidation of membrane protein thiols.  相似文献   

13.
In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6‐dihydroxyindole‐2‐carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5‐S‐cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time‐resolved near‐infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450‐nm, quantum yield of singlet oxygen was very low (~10?4) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.  相似文献   

14.
Mitochondrial damage and oxidative stress are known to contribute to the pathogenesis of noise-induced hearing loss (NIHL). In this study, we examined the protective effect of O2/O3 mixture (ozone/oxygen) therapy against mitochondrial induced damage and oxidative stress by noise exposure in rat brain and cochlear. For this purpose, rats were divided into four groups: 1 – control group; 2 – noise-exposed group (100?dB); 3 – noise?+?O2/O3, and 4 – O2/O3 (30 µg/ml). After 14 d, animals were anesthetised. Rat brain and cochlear tissue were removed for evaluation of the histopathological damages, oxidative stress, and mitochondrial dysfunction in both tissues. Our findings indicated that noise caused pathological damage, oxidative stress, and mitochondrial dysfunction in rat brain and cochlear. Also, daily administration of an O2/O3 therapy (30 µg/ml intravenous) efficiently increased enzymatic and non-enzymatic antioxidant in brain and cochlear that this action led to inhibition of pathological damages, oxidative stress, reactive oxygen species formation, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release resulting from noise. These findings suggest that the moderate O2/O3 therapy enhances the capacity of enzymatic and non-enzymatic antioxidant in brain and cochlear that protects against NIHL.  相似文献   

15.
Adriamycin and related anthracyclines are potent oncolytic agents, the clinical utility of which is limited by severe cardiotoxicity. Aglycone metabolites of Adriamycin (5–20 μM) induce a Ca2+-dependent increase in the permeability of the inner mitochondrial membrane of both heart and liver mitochondria to small (< 1500 Da) solutes; this phenomenon is accompanied by release of mitochondrial Ca2+, mitochondrial swelling, collapse of the membrane potential, oxidation of mitochondrial pyridine nucleotides [NAD(P)H], uncoupling, and a transition from the condensed to the orthodox conformation and is inhibited by ATP, dithiothreitol, the immunosuppressant cyclosporin A, and the ubiquitous polyamine spermine. Aglycones also modify mitochondrial sulfhydryl groups and induce a Ca2+ independent oxidation of mitochondrial NAD(P)H which appears to reflect electron transport from NADH to oxygen, mediated by the aglycones and resulting in the production of Superoxide (O2). Selenium deficiency and butylated hydroxytoluene inhibit aglycone-induced Ca2+ release from liver, but not heart, mitochondria, suggesting that the interactions of the aglycones with mitochondria diner in these two tissues. It can be proposed that the effects of Adriamycin aglycones on heart mitochondria are responsible for the cardiotoxicity of the parent drug.  相似文献   

16.
Incubation of freshly isolated rat liver mitochondria in the presence of oxygen free radical generating hypoxanthine —xanthine oxidase system led to swelling of mitochondria as measured by the change in optical density, which was reversed by the addition of superoxide dismutase. O2 in the presence of CaCl2 enhanced the peroxidative decomposition of mitochondrial membrane lipids along with swelling of the organelle. Free radical generation led to enhancement of monoamine oxidase activity while glutathione peroxidase and cytochrome c oxidase were inhibited. Tertbutyl hydroperoxide (t-BHP) caused mitochondrial swelling through oxidative stress. Incorporation of ruthenium red, which is a Ca2+ transport blocker, during assay abolished peroxidative membrane damage and swelling. Dithiothreitol (DTT) accorded protection against t-BHP induced mitochondrial swelling. The above in vitro data suggest a possible interrelationship of active oxygen species, membrane damage and calcium dynamics.  相似文献   

17.
Inhibitory effects of calcium antagonists, efonidipine (NZ-105), nicardipine, nifedipine, nimodipine and flunarizine, on mitochondrial swelling induced by lipid peroxidation or arachidonic acid in the rat brain in vitro were investigated. Mitochondrial swelling and lipid peroxidation induced by FeSO4 and ascorbic acid system showed a close and significant relationship. Mitochondrial swelling and lipid peroxidation induced by FeSO4 and ascorbic acid were inhibited by all of calcium antagonists tested. The order of inhibition was: flunarizine>nicardipine>efonidipine>nimodipine>nifedipine. This result suggests that calcium antagonists tested have antiperoxidant activities resulting in protection of mitochondrial membrane damage and that each moiety of these structures would play an important role in appearance of anti-peroxidant activities. Furthermore, flunarizine and efonidipine inhibited mitochondrial swelling induced by arachidonic acid, which is not associated with lipid peroxidation. In contrast, nicardipine, nifedipine, and nimodipine did not inhibited this swelling. It is possible that flunarizine and efonidipine could directly interact with mitochondrial membrane. In conclusion, it is capable that calcium antagonists tested may protect from the membrane damage induced by lipid peroxidation and that flunarizine and efonidipine could stabilize the membrane, which is attributed to a direct interaction with the membrane.  相似文献   

18.
The binding of methylmercury, CH3Hg(II), by small molecules in the intracellular region of human erythrocytes has been studied by 1H-NMR spectroscopy. To suppress or completely eliminate interfering resonances from the much more abundant hemoglobin protons, spectra were measured by a technique based on the transfer of saturation throughout the envelope of hemoglobin resonances following a selective presaturation pulse or by the spin-echo Fourier transform method. With these techniques, 1H-NMR spectra were measured for the more abundant intracellular small molecules, including glycine, alanine, creatine, lactic acid, ergothioneine and glutathione, in both intact and hemolyzed erythrocytes to which CH3Hg(II) had been added. The results for intact erythrocytes indicate that part of the CH3Hg(II) is complexed by intracellular glutathione. These results also indicate that exchange of CH3Hg(II) among glutathione molecules is fast, with the average lifetime of a CH3Hg(II)-glutathione complex estimated to be less than 0.01 s. From exchange-averaged chemical shifts of the resonance for the proton on the α-carbon of the cysteine residue of glutathione, it is shown that, in hemolyzed erythrocytes, the sulfhydryl group of glutathione binds CH3Hg(II) more strongly than the sulfhydryl groups of hemoglobin.  相似文献   

19.
S Xu  H Pi  Y Chen  N Zhang  P Guo  Y Lu  M He  J Xie  M Zhong  Y Zhang  Z Yu  Z Zhou 《Cell death & disease》2013,4(3):e540
Mitochondria are critical targets in the hepatotoxicity of cadmium (Cd). Abnormal mitochondrial dynamics have been increasingly implicated in mitochondrial dysfunction in pathophysiological conditions. Therefore, our study aimed to investigate the effects and underlying mechanism of Cd on mitochondrial dynamics during hepatotoxicity. In the L02 liver cell lines, 12 μM cadmium chloride (CdCl2) exposure induced excessive mitochondrial fragmentation as early as 3 h post-treatment with Cd, which preceded the mitochondrial dysfunction such as reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (ΔΨm) loss and ATP reduction. Concurrent to mitochondrial fragmentation, CdCl2 treatment increased the protein levels of dynamin-related protein (Drp1) and promoted the recruitment of Drp1 into mitochondria. Strikingly, mitochondrial fragmentation also occurred in the liver tissue of rats exposed to CdCl2, accompanied by enhanced recruitment of Drp1 into mitochondria. Moreover, in L02 cells, Drp1 silencing could effectively reverse Cd-induced mitochondrial fragmentation and mitochondrial dysfunction. Furthermore, the increased expression and mitochondrial recruitment of Drp1 were tightly related to the disturbance of calcium homeostasis, which could be prevented by both chelating [Ca2+]i and inhibiting [Ca2+]m uptake. Overall, our study indicated that Cd induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis to promote hepatotoxicity. Manipulation of Drp1 may be the potential avenue for developing novel strategies to protect against cadmium-induced hepatotoxicity.  相似文献   

20.
Biophotons spontaneously emitted from radish root cells were detected using highly sensitive photomultiplier tube. Freshly isolated radish root cells exhibited spontaneous photon emission of about 4 counts s?1. Addition of hydrogen peroxide to the cells caused significant enhancement in biophoton emission to about 500 counts s?1. Removal of molecular oxygen using glucose/glucose oxidase system and scavengering of reactive oxygen species by reducing agents such are sodium ascorbate and cysteine completely diminished biophoton emission. Spectral analysis of the hydrogen peroxide-induced biophoton emission indicates that biophotons are emitted mainly in green–red region of the spectra. The data provided by electron paramagnetic resonance spin-trapping technique showed that formation of singlet oxygen observed after addition of H2O2 correlates with enhancement in biophoton emission. These observations provide direct evidence that singlet oxygen is involved in biophoton emission from radish root cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号