首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
S Stieger  U Brodbeck 《Biochimie》1991,73(9):1179-1186
We investigated the enzymatic properties of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus towards glycosyl-phosphatidylinositol anchored acetylcholinesterase (AChE) from bovine erythrocytes and Torpedo electric organ as substrate. The conversion of membrane from AChE to soluble AChE by PI-PLC depended on the presence of a detergent and of phosphatidylcholine. In presence of mixed micelles containing Triton X-100 (0.05%) and phosphatidylcholine (0.5 mg/ml) the rate of AChE conversion was about 3 times higher than in presence of Triton X-100 alone. Furthermore, inhibition of PI-PLC occurring at Triton X-100 concentrations higher than 0.01% could be prevented by addition of phosphatidylcholine. Ca2+, Mg2+ and sodium chloride had no effect on PI-PLC activity in presence of phosphatidylcholine and Triton X-100, whereas in presence of Triton X-100 alone sodium chloride largely increased the rate of AChE conversion. Determination of kinetic parameters with three different substrates gave Km-values of 7 microM, 17 microM and 2 mM and Vmax-values of 0.095 microM.min-1, 0.325 microM.min-1 and 56 microM.min-1 for Torpedo AChE, bovine erythrocyte AChE and phosphatidylinositol, respectively. The low Km-values for both forms of AChE indicated that PI-PLC not only recognized the phosphatidylinositol moiety of the anchor but also other components thereof.  相似文献   

2.
D W Heinz  M Ryan  T L Bullock    O H Griffith 《The EMBO journal》1995,14(16):3855-3863
Phosphatidylinositol (PI), once regarded as an obscure component of membranes, is now recognized as an important reservoir of second messenger precursors and as an anchor for membrane enzymes. PI-specific phospholipase C (PI-PLC) is the enzyme that cleaves PI, invoking numerous cellular responses. The crystal structure of PI-PLC from Bacillus cereus (EC 3.1.4.10) has been solved at 2.6 A resolution and refined to a crystallographic R factor of 18.7%. The structure consists of an imperfect (beta alpha)8-barrel similar to that first observed for triose phosphate isomerase and does not resemble any other known phospholipase structure. The active site of the enzyme has been identified by determining the structure of PI-PLC in complex with its inhibitor, myo-inositol, at 2.6 A resolution (R factor = 19.5%). This substrate-like inhibitor interacts with a number of residues highly conserved among prokaryotic PI-PLCs. Residues His32 and His82, which are also conserved between prokaryotic and eukaryotic PI-PLCs, most likely act as general base and acid respectively in a catalytic mechanism analogous to that observed for ribonucleases.  相似文献   

3.
The construction of four vectors for high-level expression in Escherichia coli of the phosphatidylinositol-specific phospholipase C from Bacillus cereus or Bacillus thuringiensis is described. In all constructs the coding sequence for the mature phospholipase is precisely fused to the E. coli heat-stable enterotoxin II signal sequence for targeting of the protein to the periplasm. In one set of plasmids expression of the B. cereus or B. thuringiensis enzyme is under control of the E. coli alkaline phosphatase promoter, while in a second set of plasmids expression is under control of a lac-tac-tac triple tandem promoter. A simple and rapid procedure for complete purification of the phospholipase C overproduced in E. coli, involving isolation of the periplasmic proteins by osmotic shock followed by a single column chromatography step, is described. The largest quantity of purified enzyme, 40-60 mg per liter culture, is obtained with the plasmid expressing the B. cereus enzyme under control of the lac-tac-tac promoter. Lower quantities are obtained with the plasmids containing the alkaline phosphatase promoter (15-20 and 4-6 mg/liter for the B. cereus and B. thuringiensis enzymes, respectively) and with the plasmid expressing the B. thuringiensis phospholipase under control of the lac-tac-tac promoter (15-20 mg/liter). A comparison of the functional properties of the recombinant phospholipases with the native enzymes isolated from B. cereus or B. thuringiensis culture supernatant shows that they are identical with respect to their catalytic functions, viz., cleavage of phosphatidylinositol and cleavage of the glycosyl-phosphatidylinositol membrane anchor of bovine erythrocyte acetylcholinesterase.  相似文献   

4.
Thiophosphate analogs (C-S-P bond) of phosphatidylinositol (Cn-thio-PI: racemic hexadecyl-, dodecyl-, and octylthiophosphoryl-1-myo-inositol) and a fluorescent analog (pyrene-PI: rac-4-(1-pyreno)-butylphosphoryl-1-myo-inositol) were all substrates for phosphatidylinositol-specific phospholipase C from Bacillus cereus. Hydrolysis of thio-PI was followed by coupling the production of alkylthiol to a disulfide interchange reaction with dithiobispyridine. Hydrolysis of pyrene-PI was followed using a HPLC-based assay with fluorescence detection. The activity of PI-PLC with thio-PI analogs showed an interfacial effect. C16-Thio-PI, which had a critical micelle concentration (CMC) of 7 microM, gave a hyperbolic activity versus concentration curve between 0 and 2 mM, while C8-thio-PI, which had a CMC above 10 mM, showed very low activity which increased greatly upon introduction of an interface in mixed micelles with hexadecylphosphocholine (HDPC). Pyrene-PI, which aggregates above 0.3 mM, gave a sigmoidal activity curve with much higher activity above the CMC. All three thio-PI homologs as mixed micelles with HDPC gave hyperbolic activity curves with PI-PLC that were a function of bulk concentration of substrate at constant surface concentration and surface concentration of substrate at constant bulk concentration. The maximal activity of PI-PLC with pure C16-thio-PI micelles was 6.25 mumol min-1 mg-1, while that with pyrene-PI was estimated to be 68 mumol min-1 mg-1. With pure C16-thio-PI micelles, 0.022 mM substrate gave half Vmax, similar to that in mixed micelles with HDPC.  相似文献   

5.
6.
Phosphatidylinositol-specific phospholipase C was purified from the culture medium of B. thuringiensis to high specific activity using a procedure we recently described for purification of PI-PLC from B. cereus (Volwerk et al. (1989) J. Cell. Biochem. 39, 315-325). The purified enzymes from B. thuringiensis and B. cereus have similar specific activities towards hydrolysis of the membrane lipid phosphatidylinositol, and also towards hydrolysis of the glycosyl-phosphatidylinositol-containing membrane anchor of bovine erythrocyte acetylcholinesterase. These results indicate very similar catalytic properties for the structurally homologous PI-specific phospholipases C secreted by these bacilli.  相似文献   

7.
The inactivation of phospholipase C from Bacillus cereus at pH6 by diethyl pyrocarbonate parallelled the N-ethoxyformylation of a single histidine residue in the enzyme. The inactivation arose from a decrease in the maximum velocity of the enzymic reaction with no effect on the Km value. The inactivation did not apparently alter the ability of the enzyme to bind to a substrate-based affinity gel. The native enzyme contained only one reactive histidine residue. Removal of the two zinc atoms from the enzyme increased the number of reactive histidine residues to five, whereas in the totally denatured enzyme nearly eight such residues were available for reaction with diethyl pyrocarbonate. The enzyme thus appears to contain one histidine residue that is essential for catalytic activity and four that may be involved in co-ordinating the zinc atoms in the structure.  相似文献   

8.
Purification of a phospholipase C from Bacillus cereus   总被引:6,自引:0,他引:6  
  相似文献   

9.
The substrate requirement of phospholipids for hydrolysis with phospholipase C from Bacillus cereus was studied with synthetic lipids well-defined in structure and configuration. For optimal activity, the glycerol molecule must contain three substituents: phosphocholine in sn-3-, an ester bond in sn-2- and an ether- or ester bond in sn-1-position. The length of the ester or ether chains is of minor importance. Any deviation from these structural requirements results in a large decrease in the hydrolysis rate. These essential structural and configurational elements for optimal activity for the B. cereus enzyme are perfectly combined in the platelet activating factor, 1-O-hexadecyl-2-acetyl-sn-glycero-3- phosphocholine. This molecule is one of the best substrates for hydrolysis with the bacterial phospholipase C.  相似文献   

10.
Low-angle X-ray diffraction shows that, despite the well-defined regular axially projected structure, there is no long-range lateral order in the packing of molecules in native (undried) or dried elastoidin spicules from the fin rays of the spurhound Squalus acanthias. The equatorial intensity distribution of the X-ray diffraction pattern from native elastoidin indicates a molecular diameter of 1.1 nm and a packing fraction for the structure projected on to a plane perpendicular to the spicule (fibril) axis of 0.31 (the value for tendon is much higher at around 0.6). Density measurements support this interpretation. When the spicule dries the packing fraction increases to 0.43 but there is still no long-range order in the structure. The X-ray diffraction patterns provide no convincing evidence for any microfibrils or subfibrils in elastoidin. Gel electrophoresis shows that the three chains in the elastoidin molecule are identical. The low packing fraction for collagen molecules in elastoidin explains the difference in appearance between electron micrographs of negatively stained elastoidin and tendon collagen. In elastoidin, but not in tendon collagen, an appreciable proportion of the stain is able to penetrate between the collagen molecules.  相似文献   

11.
12.
Monophosphatidylinositol inositol phosphohydrolase (phosphatidylinositol-specific phospholipase C. PtdIns-PLC. EC 3.1.4.10) has been purified from a Bacillus thuringiensis culture supernatant and from the cellular fraction of a recombinant Escherichia coli clone containing the PtdIns-PLC gene from B. thuringiensis. The two-step purification procedure involved ion-exchange chromatography on DEAE-Sepharose followed by separation on a Mono-Q/FPLC-column with yields of 32% and 50%, respectively. The molecular mass was determined to be 34 kDa by SDS/PAGE. The isoelectric point of the enzyme was 5.15. The amino-terminal sequences were shown to be identical for the enzymes purified from both organisms. PtdIns-PLC was inhibited by divalent cations using mixed micelles of Triton X-100 and pure phosphatidylinositol. PtdIns-PLC activity was detectable on polyacrylamide gels by activity staining on phosphatidylinostiol-containing agarose.  相似文献   

13.
Two active site histidine residues have been implicated in the catalysis of phosphatidylinositol-specific phospholipase C (PI-PLC). In this report, we present the first study of the pKa values of histidines of a PI-PLC. All six histidines of Bacillus cereus PI-PLC were studied by 2D NMR spectroscopy and site-directed mutagenesis. The protein was selectively labeled with 13C epsilon 1-histidine. A series of 1H-13C HSQC NMR spectra were acquired over a pH range of 4.0-9.0. Five of the six histidines have been individually substituted with alanine to aid the resonance assignments in the NMR spectra. Overall, the remaining histidines in the mutants show little chemical shift changes in the 1H-13C HSQC spectra, indicating that the alanine substitution has no effect on the tertiary structure of the protein. H32A and H82A mutants are inactive enzymes, while H92A and H61A are fully active, and H81A retains about 15% of the wild-type activity. The active site histidines, His32 and His82, display pKa values of 7.6 and 6.9, respectively. His92 and His227 exhibit pKa values of 5.4 and 6.9. His61 and His81 do not titrate over the pH range studied. These values are consistent with the crystal structure data, which shows that His92 and His227 are on the surface of the protein, whereas His61 and His81 are buried. The pKa value of 6.9 corroborates the hypothesis of His82 acting as a general acid in the catalysis. His32 is essential to enzyme activity, but its putative role as the general base is in question due to its relatively high pKa.  相似文献   

14.
Inhibition of Bacillus cereus phospholipase C by univalent anions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The rate of phospholipid hydrolysis in erythrocyte ghosts by Bacillus cereus phospholipase C was markedly decreased by the presence of NaCl at concentrations between 25 and 200 mM. The inhibition seemed to be due to Cl- and was unaffected by the type of cation present. The larger univalent anions such as HCO3-, Br-, Cl-, NO3-, CNO- and I- seemed most effective, whereas the bivalent anion SO42- was relatively ineffective at 0.1 M, as were acetate and formate. Tris buffers at 0.1 M caused marked inhibition. With bovine brain myelin, phospholipid hydrolysis by phospholipase C was also much more strongly inhibited by I- and Cl- than by SO42- or acetate. NaCl inhibited the hydrolysis by the enzyme of the soluble substrate dihexanoylglycerophosphocholine, thereby suggesting that the inhibiton did not arise simply from substrate effects.  相似文献   

15.
16.
Bacterial phosphatidylinositol-specific phospholipases C (PI-PLC) display similar substrate specificity as their eukaryotic counterparts involved in signal transduction of insulin and Ca2(+)-mobilizing hormones, and are used in the study of the novel glycosylphosphatidylinositol-protein anchors (GPI-anchors). For the investigation of structure-function aspects of the PI-PLC secreted from Bacillus cereus cells, a panel of murine monoclonal antibodies was generated and shown to be specific for the PI-PLC polypeptide in enzyme-linked immunosorbent assays and Western blots. Two of the monoclonals inhibited reactions catalyzed by the bacterial enzyme in vitro: hydrolysis of phosphatidylinositol and the release of bovine erythrocyte acetylcholinesterase from its GPI-anchor. At saturating concentrations of inhibitory antibody only a few percent of the enzyme activity remained. The epitope recognized by one of the inhibitory antibodies, A72-24, was mapped by proteolytic digestion, protein sequencing, and Western blotting of the generated fragments. The data indicate that at least part of the epitope resides within an 8 kDa-stretch of the bacterial PI-PLC (Gln-45 - Lys-122). Essentially the same segment of the bacterial polypeptide has previously been shown to display limited amino acid sequence similarity with several eukaryotic PI-specific phospholipases C (Kuppe, A., Evans, L.M., McMillen, D.A. and Griffith, O.H. (1989) J. Bacteriol. 171, 6077-6083). The results reported here suggest that the conserved peptide of these enzymes may contain functionally important residues.  相似文献   

17.
The gene encoding monophosphatidylinositol inositol phosphohydrolase (PI-specific phospholipase C, PI-PLC) of Bacillus thuringiensis was cloned in Staphylococcus carnosus TM300. The complete coding region comprises 987 base pairs corresponding to a precursor protein of 329 amino acids (molecular weight, 38095). The NH2-terminal sequence of the purified enzyme from Escherichia coli indicated that the mature PI-PLC consists of 299 amino acid residues with a molecular weight of 34586. Polyacrylamide gel electrophoresis revealed the same molecular weight for the purified enzyme isolated from the DNA-donor strain of B. thuringiensis and from the E. coli clone. By computer analysis, the secondary structure was predicted. The enzyme from the E. coli recombinant shows no activity on other phospholipids and sphingo-myelin. The cleaving specifity of PI-PLC was examined by thin layer chromatography.  相似文献   

18.
Phospholipase C (phosphatidylcholine choline-phosphohydrolase, EC 3.1.4.E) from Bacillus cereus (IAM-1208) was adsorbed to palmitoyl cellulose from a crude enzyme solution at pH 5--9. The adsorption was not influenced by ionic strength up to 2 M NaCl. The adsorbed enzyme was eluted almost completely by washing the cellulose with a suitable detergent, such as Triton X-100, Adekatol SO-120, Cation DT-205, or sodium deoxycholate. The enzyme was then purified by column chromatography on a palmitoylated textile (palmitoylated gauze) with an overall recovery of 91% and a 467-fold increase in specific activity over that of enzyme in the crude culture supernatant. Subsequent fractionation with acetone and chromatography on a Sephadex G-75 column separated two nearly homogeneous phospholipase C's. The enzyme adsorbed on palmitoyl cellulose was active, although its activity was about one-fourth that of free phospholipase C. Therefore, the enzyme appeared to be adsorbed to the cellulose through a hydrophobic site that was distinct from the catalytic site on the enzyme molecule.  相似文献   

19.
A phosphatidylinositol-specific phospholipase C (PI-PLC) has been isolated from bovine brain (purification factor of 5.6 x 10(4)). By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it had a Mr of 57,000. Neither amino nor neutral sugars were detected in the purified enzyme. The pH optimum was 7.0-7.5, and the activity decreased only slightly at pH 8.0. When phosphatidylinositol was used as a substrate, the optimum Ca2+ requirement was 4 mM, and Km was 260 microM. When phosphatidylinositol 4,5-bisphosphate was used, the optimum Ca2+ requirement was 10(-7) M, and the Km was reduced to 90 microM. Lipid specificity studies showed that equal amounts of inositol phosphate and diacylglycerol were released from phosphatidylinositol but 4 times as much inositol 1,4,5-trisphosphate was released from phosphatidylinositol 4,5-bisphosphate. Other lipids, phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, were not substrates. Failure to detect phosphatidic acid confirmed the absence of a phospholipase D activity in the purified enzyme. Myelin basic protein (MBP) stimulated the PI-PLC activity between 2- and 3-fold. Histone had a small effect only, whereas bovine serum albumin and cytochrome C had no effect. Phosphorylation of MBP reduced the stimulatory effect. Protein-protein interactions between MBP and PI-PLC have been demonstrated both immunologically and by sucrose density gradients. A stoichiometry of 1:1 has been suggested by the latter method. A number of peptides have been prepared by chemical, enzymatic, and synthetic methods. Peptides containing the MBP sequences consisting of residues 24-33 and 114-122 stimulated the PI-PLC but were less effective than the intact protein.  相似文献   

20.
1. Protein-fluorescence studies indicated that phospholipase C from Bacillus cereus is denatured in solutions of guanidinium chloride. The denaturation was not thermodynamically reversible and followed biphasic kinetics. 2. Guanidinium chloride solutions released the structural Zn2+ from the enzyme and rendered all histidine residues chemically reactive. In the presence of free Zn1+ the enzyme was much more resistant to denaturation. Also, the addition for free Zn2+ to the denatured enzyme induced refolding. 3. The Zn2+-free apoenzyme was much more sensitive to guanidinium chloride than was the native enzyme and the denaturation appeared to be thermodynamically reversible. 4. Guanidinium chloride denaturation was associated with a reversible inactivation of the enzyme. Heat-inactivated, coagulated enzyme was substantially re-activated on dissolution in guanidinium chloride solutions followed by dialysis against a Zn2+-containing buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号