首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term and immediate galvanotactic responses of Amoeba proteus to the direct current electric fields (dcEFs) were studied with the methods of computer-aided image analysis. It was found that in contrast to earlier reports, amoebae continued locomotion towards cathode (the negative pole) for hours and the increase in the field strength in the range 300-600 mV/mm caused the straightening of cell trajectories accompanied by the decreased frequency of the lateral pseudopods formation and lesser change in the speed of cell movement. In the cell regions pointing to the anode, the formation of new pseudopodia was prevented and the higher cEFs strength the more extended were the regions in which formation of new pseudopods was inhibited. Replacement of calcium with magnesium in the extracellular medium reduced the galvanotactic cell responses. Research on the localisation and kinetics of the primary cell responses to the dcEF or to change in its direction revealed that the primary cell responses occurred at the anode oriented cell regions. The cell response to the field reversal appeared to be localised and to take place in less than 1 sec. First the retraction and withdrawal of the anode-directed pseudopodium was observed whereas the uroid (cell tail) moved for 10-40 sec in the original direction before it begun to react to the field reversal. The exposure of amoebae to the dcEFs sensitised them to the reversion in the field direction and induced an acceleration of cell responses. The results presented are difficult to reconcile with the attempt to explain the cell galvanotaxis as a consequence of the membrane protein lateral electrophoresis or electroosmosis. It is suggested that the lateral electrophoresis of ions and the modification of ionic conditions at the vicinity of ion channels may be involved in the induction of fast responses of cells to external dcEFs.  相似文献   

2.
Yan X  Han J  Zhang Z  Wang J  Cheng Q  Gao K  Ni Y  Wang Y 《Bioelectromagnetics》2009,30(1):29-35
Endogenous direct-current electric fields (dcEFs) occur in vivo in the form of epithelial transcellular potentials or neuronal field potentials. A variety of cells respond to dcEFs by migrating directionally, and this is termed galvanotaxis. The mechanism by which dcEFs direct cell movement, however, is not yet understood, and the effects on lung cancer cells are entirely unknown. We demonstrated that cultured human lung adenocarcinoma A549 cells migrate toward the cathode in applied dcEFs at 3 V/cm. Fluorescence microscopy showed that both epidermal growth factor receptors (EGFRs) and F-actin are polarized to the cathode. EGFR inhibitors, cetuximab and AG1478, reduced the migration rate and directed motility in dcEFs. Western blots showed that ERK and AKT signaling pathways were prominently promoted by dcEFs. EGFR inhibitors could reduce this promotion but not completely. These data suggest that polarization of EGFRs and the activation of their downstream signals play an important role in the galvanotaxis of A549 cells in dcEFs.  相似文献   

3.
Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.  相似文献   

4.
The galvanotactic response of human granulocytes was investigated theoretically and experimentally. The basic results are: (i) The granulocytes move towards the anode. (ii) The directed movement has been quantified by two different polar order parameters-the McCutcheon index and the average of cos . (iii) The polar order parameters are a function of the applied electric field (= dose-response curve). (iv) The inverse of the galvanotactic constant of migrating cells (analogous to the Michaelis-Menten constant) has a value of-0.2±0.03 V/mm. (v) The galvanotactic response of granulocytes is a non-cooperative process with a cooperativity coefficient of 1±0.2. (vi) The galvanotactic constant is a function of pH. (vii) The protein essential for the galvanotactic response is very likely a G-protein.  相似文献   

5.
The metastatic ability of prostate cancer cells involves differential expression of ionic mechanisms. In the present study, using electrophysiological recordings and intracellular Ca2+ measurements, we investigated Ca2+ related signalling in two rat prostate cancer (MAT-LyLu and AT-2) cell lines of markedly different metastatic potential. Whole-cell voltage clamp experiments indicated the absence of an inward current carried through voltage-dependent Ca2+ channels in either cell line. A Ca2+-dependent component was also absent in the voltage-activated outward K+ currents. Indo-1 microfluorimetry confirmed these results and also revealed marked differences in the resting level of intracellular Ca2+ and the ability of the two cell lines to regulate intracellular Ca2+. The weakly metastatic AT-2 cells displayed a significantly higher resting intracellular Ca2+ than the related but strongly metastatic MAT-LyLu cell line. Increasing extracellular K+ decreased intracellular Ca2+ in the AT-2 but had no effect on intracellular Ca2+ levels in the MAT-LyLu cells. Furthermore, increasing extracellular Ca2+ increased intracellular Ca2+ in AT-2 but, again, had no effect on MAT-LyLu cells. These results suggested the presence of a tonic, voltage-independent Ca2+ permeation mechanism operating specifically in the AT-2 cells. The influx of Ca2+ into the AT-2 cells was suppressed by both CdCl2 (100-300 microM) and SKF-96365 (10-30 microM). It is concluded that the strongly metastatic MAT-LyLu cell line lacks a voltage-independent basal Ca2+ influx mechanism that is present in the weakly metastatic AT-2 cells.  相似文献   

6.
Aerobic and anaerobic ciliates swim towards the cathode when they are exposed to a constant DC field. Nyctotherus ovalis from the intestinal tract of cockroaches exhibits a different galvanotactic response: at low strength of the DC field the ciliates orient towards the anode whereas DC fields above 2-4 V/cm cause cathodic swimming. This reversal of the galvanotactic response is not due to backward swimming. Rather the ciliates turn around and orient to the cathode with their anterior pole. Exposure to various cations, chelators, and Ca(2+)-channel inhibitors suggests that Ca(2+)-channels similar to the "long lasting" Ca(2+)-channels of vertebrates are involved in the voltage-dependent anodic galvanotaxis. Evidence is presented that host-dependent epigenetic factors can influence the voltage-threshold for the switch from anodic to cathodic swimming.  相似文献   

7.
Endogenous direct current electric fields (dcEFs) play a significant role in major biological processes such as embryogenesis, wound healing, and tissue regeneration. In this study, the galvanotaxis of human umbilical vein endothelial cell line EA.Hy926 was investigated by using a novel designed bioreactor. The physical features of the bioreactor were discussed and analyzed by both numerical simulation method and equivalent circuit model method. EA.Hy926 cells were cultured in the bioreactor for 10–24 h under 50–250 mV/mm dcEFs. Cell migration direction, distance, and velocity were recorded under an online time-lapse microscope. The effects of serum and growth factor on cell galvanotatic migration were investigated. To further explore the role of dcEFs in regulating endothelial cells, we analyzed the endothelial cell proliferation and secretion of nitric oxide (NO), endothelin-1 (ET-1) in response to dcEFs of physiological strength. Our results showed that EA.Hy926 cells had an obvious directional migration to the cathode, and the EF-directed migration was voltage dependent. The results also showed dcEFs did not affect cell proliferation, but affected the productions of NO and ET-1. Our study also showed the novel bioreactor, with a compact and planar style, makes it more convenient and more reasonable for EF stimulation experiments than earlier chamber designs.  相似文献   

8.
The static and dynamic responses of human granulocytes to an electric field were investigated. The trajectories of the cells were determined from digitized pictures (phase contrast). The basic results are: (i) The track velocity is a constant as shown by means of the velocity autocorrelation function. (ii) The chemokinetic signal transduction/response mechanism is described in analogy to enzyme kinetics. The model predicts a single gaussian for the track velocity distribution density as measured. (iii) The mean drift velocity induced by an electric field, is the product of the mean track velocity and the polar order parameter. (iv) The galvanotactic dose-response curve was determined and described by using a generating function. This function is linear in E for E < E 0 = 0.78 V/mm with a galvanotaxis coefficient K G of (–0.22 V/mm)–1 at 2.5 mM Ca++. For E > E 0 the galvanotactic response is diminished. This inhibition is described by a second term in the generating function (–K G · K I (EE 0)) with an inhibition coefficient K I of 3.5 (v) The characteristic time involved in directed movement is a function of the applied electric field strength: about 30 s at low field strengths and below 10 s at high field strengths. The characteristic time is 32.4 s if the cells have to make a large change in direction of movement even at large field strength (E jump). (vi) The lag-time between signal recognition and cellular response was 8.3 s. (vii) The galvanotactic response is Ca++ dependent. The granulocytes move towards the anode at 2.5 mM Ca++ towards the cathode at 0.1 mM Ca++. (viii) The directed movement of granulocytes can be described by a proportional-integral controler. Offprint requests to: H. Gruler  相似文献   

9.
BACKGROUND INFORMATION: Motile activity of tumour cells is regarded as a critical factor determining their metastatic potential. We have shown previously that contrary to the majority of normal cells, homotypic contacts between some tumour cells, among them low metastatic (AT-2) and highly metastatic (MAT-LyLu) rat prostate cancer cells, increase the speed of their movements. The aim of the present study was to determine the effect of heterotypic cell-to-cell contacts on the migration of rat prostate cancer cells differing in metastatic potential, and to correlate it with the intensity of homo- and heterologous gap junctional coupling. RESULTS: MAT-LyLu and AT-2 cells moving on the surface of fibroblasts displayed significantly greater cell displacement than those moving on plastic substrata. This effect correlated with the polarization (contact guidance) and increased speed of cell movements. However, in contrast with the migration on plastic substrata, where MAT-LyLu cells displayed considerably higher motility than AT-2 cells, no differences between both cell lines were observed on the surface of fibroblasts. On the other hand, in contrast with AT-2, Mat-LyLu cells displayed extensive homologous coupling mediated by connexin43 and were able to couple with normal fibroblasts. CONCLUSION: Heterotypic contacts between migrating prostatic cancer cells and normal fibroblasts can strongly stimulate their migration during invasion; however, this effect does not correlate with the gap junctional coupling between cancer cells and normal fibroblasts.  相似文献   

10.
The secretory membrane activities of two rat prostate cancer cell lines of markedly different metastatic potential, and corresponding electrophysiological characteristics, were studied in a comparative approach. In particular, voltage-gated Na(+) channels (VGSCs) were expressed in the strongly metastatic MAT-LyLu but not in the closely related, but weakly metastatic, AT-2 cells. Uptake and release of the non-cytotoxic marker horseradish peroxidase (HRP) were used as indices of general endocytotic and exocytotic membrane activity, respectively. The amount of tracer present in a given experimental condition was quantified by light microscopic digital imaging. The uptake of HRP was an active process, abolished completely by incubating the cells at low temperature (5 degrees C) and suppressed by disrupting the cytoskeleton. Interestingly, the extent of HRP uptake into the strongly metastatic MAT-LyLu cells was almost twice that into the weakly metastatic AT-2 cells. Vesicular uptake of HRP occurred in a fast followed by a slow phase; these appeared to correspond to cytoplasmic and perinuclear pools, respectively. Importantly, the overall quantitative difference in the uptake disappeared in the presence of 1 microM tetrodotoxin which significantly reduced the uptake of HRP into the MAT-LyLu cells. There was no effect on the AT-2 cells, consistent with functional VGSC expression occurring selectively in the former. A similar effect was observed in Na(+)-free medium. The uptake was partially dependent upon extracellular Ca(2+) but was not affected by raising the extracellular K(+) concentration. We suggest that functional VGSC expression could potentiate prostate cancer cells' metastatic ability by enhancing their secretory membrane activity.  相似文献   

11.
The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.  相似文献   

12.
Voltage-gated Na+ channels are expressed by highly metastatic MAT-LyLu cells, but not by poorly metastatic AT-2 cells, derived from the rodent Dunning model of prostatic cancer. We have investigated the possible involvement of these channels in the morphological development of the cells. Incubation of both the MAT-LyLu and the AT-2 cell line for 24 h with the Na+ channel blocker tetrodotoxin (TTX) at 6 μM altered the morphology only of the MAT-LyLu cell line. TTX produced significant decreases in: (a) cell process length and (b) field diameter, and increases in (c) cell body diameter and (d) process thickness. Importantly, 6 μM TTX had no significant effects on proliferation rates or cellular toxicity. The results suggest that Na+ channel activity plays a significant role in determining the morphological development of MAT-LyLu cells in such a way as to enhance their metastatic potential. Received: 9 March 1998 / Accepted: 5 October 1998  相似文献   

13.

Background

Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF) are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration.

Methodology/Principal Findings

We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10–15 V/cm) and weak (≤5 V/cm) dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs) are involved in dcEF-induced intracellular calcium elevation.

Conclusion/Significance

Taken together, these data form a time scale of the morphological and physiological rearrangements underlying EF-guided migration of osteoblast-like cell types and reveal a requirement for calcium in these reactions. We show for the first time here that dcEFs trigger different patterns of intracellular calcium elevation and positional shifting in osteogenic cell types that migrate in opposite directions.  相似文献   

14.
Using a custom galvanotaxis chamber and time-lapse digital video microscopy, we report the novel observation that cultured chondrocytes exhibit cathodal migration when subjected to applied direct current (DC) electric fields as low as 0.8 V/cm. The response was dose-dependent for field strengths greater than 4 V/cm. Cell migration appeared to be an active process with extension of cytoplasmic processes in the direction of movement. In some cells, field application for greater than an hour induced elongation of initially round cells accompanied by perpendicular alignment of the long axis with respect to the applied field. Antagonists of the inositol phospholipid pathway, U-73122 and neomycin, were able to inhibit cathodal migration. Cell migration toward the cathode did not require the presence of serum during field application. However, the directed velocity was nearly threefold greater in studies performed with serum. Studies performed at physiologic temperatures (approximately 37 degrees C) revealed a twofold enhancement in migration speed compared to similar studies at room temperature (approximately 25 degrees C). Findings from the present study may help to elucidate basic mechanisms that mediate chondrocyte migration and substrate attachment. Since chondrocyte migration has been implicated in cartilage healing, the ability to direct chondrocyte movement has the potential to impact strategies for addressing cartilage healing/repair and for development of cartilage substitutes.  相似文献   

15.
Calcium ion (Ca2+) is one of the key regulatory elements for ciliary movements in the Paramecium species. It has long been known that members of Paramecium species including green paramecia (Paramecium bursaria) exhibit galvanotaxis which is the directed movement of cells toward the anode by swimming induced in response to an applied voltage. However, our knowledge on the mode of Ca2+ action during green paramecia anodic galvanotactic response is still largely limited. In the present study, quantification of anodic galvanotaxis was carried out in the presence and absence of various inhibitors of calcium signaling and calcium channels. Interestingly, galvanotactic movement of the cells was completely inhibited by a variety of Ca2+-related inhibitors. Such inhibitors include a Ca2+ chelator (EGTA), general calcium channel blockers (such as lanthanides), inhibitors of intracellular Ca2+ release (such as ruthenium red and neomycin), and inhibitors of T-type calcium channels (such as NNC 55-0396, 1-octanol and Ni2+). However, L-type calcium channel inhibitors such as nimodipine, nifedipine, verapamil, diltiazem and Cd2+ showed no inhibitory action. This may be the first implication for the involvement of T-type calcium channels in protozoan cellular movements.  相似文献   

16.
The effects of calcium ions and of the calcium channel blockers verapamil, diltiazem and nifedipine on galvanotaxis in Chlamydomonas have been investigated using a fully automated and computerized population system. Galvanotaxis is a function of the voltage applied to the cell population. However, the galvanotactic orientation also depends on the external calcium concentration. In a calcium-deprived nutrient medium which still contains 6 × 10?7M calcium, galvanotactic orientation is about 20% of orientation at optimal calcium concentration of 10?4 M at 9 V. The higher the external calcium concentration is, the lower is the voltage necessary for optimal galvanotactic orientation. The calcium channel blockers diltiazem and nifedipine likewise inhibit galvanotaxis of Chlamydomonas very specifically without impairing motility. Verapamil is effective, but also inhibits motility by causing detachment or shortening of the flagella. Nevertheless, inhibition of galvanotaxis by verapamil is not the only result of decreased motility, because the galvanotactic orientation is impaired to a greater extent than motility. The effectiveness of the three blockers tested in inhibiting galvanotaxis depends on the concentration and on the voltage applied. At 10?5 M, verapamil causes maximal inhibition of galvanotaxis at 9 V. At increasing concentrations up to 10?4 M, diltiazem inhibits galvanotaxis more strongly than the other blockers. If the voltage is varied at a constant blocker concentration of 2 × 10?5 M, nifedipine causes maximal inhibition at 3 V–6 V, diltiazem at 9 V and verapamil above 12 V.  相似文献   

17.
A study was initiated to test whether the FM1-43 dye technique could beapplied to the study of endocytic membrane activity in two rodent prostatecancer (MAT-LyLu and AT-2) cell lines of markedly different metastaticability. The lipophilic dye FM1-43, which has frequently been used tomonitor endo/exocytic activity in excitable cells was employed. We found,as in excitable tissues, that both strongly metastatic (MAT-LyLu) andweakly metastatic (AT-2) cells in culture take up FM1-43 to give vesicularstaining of a variable pattern, which appeared to differ between the twocell lines. However, unlike excitable tissues, neither cell linesubsequently released the dye. Indeed, both cell lines retained the dyethrough several rounds of cell division suggesting that dye incorporatedby cells does not enter the endo/exocytotic cycle. Uptake of dye wasindependent of temperature, Na+/K+ gradients, pH or metabolism. Wesuggest that passive accumulation of FM1-43 can occur in cancer cells andshould not, automatically, be interpreted as evidence of endocytosis.  相似文献   

18.
Epithelial layers in developing embryos are known to drive ion currents through themselves that will, in turn, generate small electric fields within the embryo. We hypothesized that the movement of migratory embryonic cells might be guided by such fields, and report here that embryonic quail somite fibroblast motility can be strongly influenced by small DC electric fields. These cells responded to such fields in three ways: (a) The cells migrated towards the cathodal end of the field by extending lamellipodia in that direction. The threshold field strength for this galvanotaxis was between 1 and 10 mV/mm when the cells were cultured in plasma. (b) The cells oriented their long axes perpendicular to the field lines. The threshold field strength for this response for a 90-min interval in the field was 150 mV/mm in F12 medium and between 50 and 100 mV/mm in plasma. (c) The cells elongated under the influence of field strengths of 400 mV/mm and greater. These fibroblasts were therefore able to detect a voltage gradient at least as low as 0.2 mV across their width. Electric fields of at least 10- fold larger in magnitude than this threshold field have been detected in vivo in at least one vertebrate thus far, so we believe that these field effects encompass a physiological range.  相似文献   

19.
Abstract. A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. an examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. the thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; (i) during exposure to electric field 24 hr before U.V. irradiation; (ii) 24 hr after U.V. irradiation; and (iii) up to 48 hr continuously after U.V. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

20.
Intact and decapped primary roots of maize (Zea mays L.) were exposed to DC electric fields of 0.5 to 8.0 V/cm in low-salinity media to resolve conflicting results about the direction of electrotropism. In DC fields of 0.5 V/cm or 1.0 V/cm, intact roots always curved toward the cathode. In a field of 8.0 V/cm, intact roots curved toward the anode and stopped growth. Decapped roots also curved toward the anode both in weak and strong fields. The results indicate that growth toward the cathode is the true response of healthy roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号