首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pehX gene encoding extracellular exo-poly-alpha-D-galacturonosidase (exoPG; EC 3.2.1.82) was isolated from a genomic library of the pectate lyase-deficient Erwinia chrysanthemi mutant UM1005 (a Nalr Kanr delta pelABCE derivative of EC16) by immunoscreening 2,800 Escherichia coli HB101 transformants with an antibody against exoPG protein. The cloned pehX gene was expressed highly from its own promoter in E. coli, and most of the enzyme was localized in the periplasm. The nucleotide sequence of pehX revealed the presence of an amino-terminal signal peptide and an open reading frame encoding a preprotein of 64,608 daltons. The cloned pehX gene was insertionally inactivated with TnphoA and used to mutate the chromosomal pehX gene of E. chrysanthemi AC4150 (Nalr) and CUCPB5006 (Nalr Kans delta pelABCE) by marker exchange mutagenesis. Analysis of the resulting mutants, CUCPB5008 (Pel+ Peh-) and CUCPB5009 (Pel- Peh-), indicated that exoPG can contribute significantly to bacterial utilization of polygalacturonate and the induction of pectate lyase in the presence of extracellular pectic polymers. CUCPB5009 retained a slight ability to pit polygalacturonate semisolid agar and macerated chrysanthemum pith tissues when large numbers of bacteria were inoculated.  相似文献   

2.
The enterobacterium Erwinia chrysanthemi causes soft-rot diseases involving extensive tissue maceration in a wide variety of plants and secretes multiple pectic enzymes that degrade plant cell walls and middle lamellae. An E. chrysanthemi mutant with directed deletions or insertions in genes pehX, pelX, pelA, pelB, pelC, and pelE, which encode exo-poly-alpha-d-galacturonosidase, exopolygalacturonate lyase, and four isozymes of pectate lyase, respectively, was constructed by the marker exchange of a cloned pehX::TnphoA fragment into E. chrysanthemi CUCPB5010, a Delta(pelA pelE) Delta(pelB pelC)::28bp Delta(pelX)Delta4bp derivative of strain EC16. This mutant, E. chrysanthemi CUCPB5012, no longer caused pitting in a standard pectate semisolid agar medium used to detect pectolytic activity in bacteria. Nevertheless, the mutant still macerated leaves of chrysanthemum (Chrysanthemum morifolium), although with reduced virulence. The mutant was found to produce significant pectate lyase activity in rotting chrysanthemum tissue and in minimal media containing chrysanthemum extracts or cell walls as the sole carbon source. Activity-stained, ultra-thin-layer isoelectric focusing gels revealed the presence in these preparations of several pectate lyase isozymes with pIs ranging from highly acidic to highly alkaline. Sterile culture fluids containing these isozymes were able to macerate chrysanthemum leaf tissue. Unlike the products of the pelA, pelB, pelC, and pelE genes in E. chrysanthemi EC16, these plant-inducible pectate lyase isozymes were not produced in minimal medium containing pectate. The results suggest that E. chrysanthemi produces two sets of independently regulated pectate lyase isozymes that are capable of macerating plant tissues.  相似文献   

3.
The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25 degrees C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.  相似文献   

4.
5.
The phytopathogenic bacterium Erwinia chrysanthemi secretes multiple isozymes of plant cell wall disrupting enzymes such as pectate lyase and endoglucanase. We cloned genomic DNA from Erwinia chrysanthemi PY35. One of the E. coli XL1-Blue clones contained a 5.1-kb BamHI fragment and hydrolyzed carboxymethyl cellulose and polygalacturonic acid. By subsequent subcloning, we obtained a 2.9-kb fragment (pPY100) that contained the pel gene responsible for CMCase and pectate lyase activities. The pel gene had an open reading frame (ORF) of 1,278 bp encoding 425 amino acids with a signal peptide of 25 amino acids. Since the deduced amino acid sequence of this protein was very similar to that of PelL of E. chrysanthemi EC16, we concluded that it belonged to the pectate lyase family EC 4.2.2.2, and we designated it PelL1. Sequencing showed that the PeIL1 protein contains 400 amino acids and has a calculated pI of 7.15 and a molecular mass of 42,925 Da. The molecular mass of PelL1 protein expressed in E. coli XL1-Blue, as analyzed by SDS-PAGE, appeared to be 43 kDa. The optimum pH for its enzymatic activity was 9, and the optimum temperature was about 40 decreased C.  相似文献   

6.
The pelB gene encodes pectate lyase B, one of three pectate lyases identified in Erwinia carotovora EC. Pectate lyase B was purified from Escherichia coli containing the pelB gene on a recombinant plasmid. The activity of the protein was optimal at a pH of 8.3. The amino acid composition, N-terminal amino acid sequence, and C-terminal peptide sequence were determined and compared with the polypeptide sequence deduced from the DNA sequence of pelB. Purified pectate lyase B started at amino acid 23 of the predicted sequence, suggesting that a 22-amino-acid leader peptide had been removed. Pectate lyase B of E. carotovora EC and pectate lyase B of E. chrysanthemi EC16 contain 352 and 353 amino acids, respectively (N. T. Keen, S. Tanaki, W. Belser, D. Dahlbeck, and B. Staskawicz, J. Bacteriol. 168:595-606, 1986). The two proteins are 72% homologous on the basis of DNA sequence data, and 75% of the amino acids are identical.  相似文献   

7.
The secretion of extracellular pectinases, among which there are least six isoenzymes of pectate lyase and one pectin methylesterase, allows the phytopathogenic bacterium Erwinia chrysanthemi to degrade pectin. A gene coding for a novel pectin methylesterase has been cloned from an E. chrysanthemi strain 3937 gene library. This gene, pemB , codes for a 433-amino-acid protein. The PemB N-terminal region has the characteristics of lipoprotein signal sequences. We have shown that the PemB precursor is processed and that palmitate is incorporated into the mature protein. The PemB lipoprotein is not released into the extracellular medium and is localized in the outer membrane. The PemB sequence presents homology with other pectin methylesterases from bacterial and plant origin. pemB -like proteins were detected in four other E. chrysanthemi strains but not in Erwinia carotovora strains. PemB was overproduced in Escherichia coli and purified to homogeneity. PemB activity is strongly increased by non-ionic detergents. The enzyme is more active on methylated oligogalacturonides than on pectin, and it is necessary for the growth of the bacteria on oligomeric substrates. PemB is more probably involved in the degradation of methylated oligogalacturonides present in the periplasm of the bacteria, rather than in a direct action on extracellular pectin. pemB expression is inducible in the presence of pectin and is controlled by the negative regulator KdgR.  相似文献   

8.
9.
J R Alfano  J H Ham    A Collmer 《Journal of bacteriology》1995,177(15):4553-4556
Erwinia chrysanthemi mutant CUCPB5047, delta(pelA pelE) delta(pelB pelC)::28bp delta(pelX) delta 4bp pehX::omega Cmr, was constructed, mutated with Tn5tac1, and screened for isopropyl-beta-D-thiogalactopyranoside-dependent pectate lyase (Pel) production. A Kmr SacI fragment from the hyperexpressing Pel+ mutant CUCPB5066 was cloned into Escherichia coli and sequenced. The gene identified, pelL, encodes a novel, asparagine-rich, highly alkaline enzyme that is similar in primary structure to PelX and in enzymological properties to PelE.  相似文献   

10.
11.
Regulation of the Aspergillus nidulans pectate lyase gene (pelA).   总被引:7,自引:1,他引:6       下载免费PDF全文
Aspergillus nidulans pectate lyase was purified from culture filtrates. The enzyme catalyzed a random eliminative cleavage reaction, had an apparent molecular weight of 40,000, and a pl of 4.2. Pectate lyase antisera were produced and used to identify pectate lyase clones in a cDNA expression library. Thirteen of 14 clones identified immunologically cross-hybridized. The identity of the single-copy pectate lyase gene, which we designated pelA, was confirmed in two ways. First, several cDNA clones expressed pectate lyase activity in Escherichia coli. Second, targeted mutation of the gene in A. nidulans resulted in complete loss of enzyme activity. pelA encodes a 1,300-nucleotide mRNA that was present in cells grown with polygalacturonic acid as carbon source but absent from cells grown with glucose or acetate as carbon source. Thus, pectate lyase expression is regulated at the level of mRNA accumulation.  相似文献   

12.
Abstract During exponential growth, Erwinia chrysanthemi (EC16) exports 99% of the protease (PRT) into the growth medium. By screening an EC16 genomic library in Escherichia coli HB101, several Prt+ clones were identified. A 16-kb Eco RI fragment, carrying the prt gene, was subcloned into pBR322 (pAKC326). E. coli HB101[pAKC326] cells exported PRT into the growth medium during exponential growth. PRT export was not accompanied by periplasmic leakage. E. coli HB101 carrying EC16 prt and pel genes (encoding pectate lyase) exported PRT but retained PEL in the periplasm. These findings indicate the occurrence of a PRT-specific export system in EC16, which is also functional in an E. coli strain carrying the prt + DNA segment.  相似文献   

13.
A pectin lyase (PNL;EC4.2.2.10) gene of Pseudomonas marginalis N6301 was cloned and expressed in Escherichia coli. We purified PNL from P. marginalis N6301 and determined N-terminal 33 amino acids sequence. From this sequence, we synthesized two oligonucleotide probes. From the analysis of Southern hybridization, 2. 1kb EcoRI-SmaI fragment from the chromosomal DNA of P. marginalis was found to hybridize with oligonucleotide probes. Then, we cloned the fragment into pUC119 vector and transformed into E. coli DH5 alpha. A plasmid thus obtained was designated as pPNL6301. E. coli DH5 alpha harboring pPNL6301 expressed PNL activity. The nucleotide sequence of pn1 gene in the plasmid pPNL6301 encoding PNL from P. marginalis N6301 was determined. The structural gene of pn1 consisted of 936 base pairs. An open reading frame that encodes a 34,103 dalton polypeptide composed of 312 amino acids was assigned. The molecular weight of the polypeptide predicted from the amino acid composition was close to that of PNL of P. marginalis N6301 determined. The nucleotide sequence of the 5'-flanking region of pn1 gene showed the presence of the consensus sequence of LexA binding site, Pribnow box and ribosome binding site as found in Escherichia coli. The amino acid sequence homology of PNLs and nucleotide sequence homology of pn1 gene between P. marginalis N6301 and E. carotovora Er were 60.8% and 57.2%, respectively.  相似文献   

14.
15.
The gene for a pectate lyase of E. chrysanthemi ENA49 cloned in a recombinant plasmid pPTL1 (a derivative of RSF1010) was transferred into E. carotovora. The pectate lyase determined by the cloned gene was secreted into the cultural medium from the cells of E. crysanthemi EC16. Partial secretion of the enzyme was registered for E. carotovora cells. The major part of EC1 E. chrysanthemi pectate lyase synthesized by E. carotovora cells is accumulated in periplasmic and cytoplasmic fractions. The obtained results suggest the different specificity or efficiency of pectate lyase secretion systems in the studied Erwinia strains.  相似文献   

16.
Mutants of Erwinia chrysanthemi EC16 deficient in the polygalacturonate catabolic enzymes oligogalacturonate lyase (Ogl-) and 3-deoxy-D-glycero-2,5-hexodiulosonate (ketodeoxyuronate) dehydrogenase (KduD-) were obtained by Tn5 mutagenesis using the R plasmid pJB4JI. Ogl- Exu+ (Exu+, D-galacturonate utilization) and KduD- Exu- strains macerated potato tuber tissue and utilized glucose, glycerol, and gluconate, but they did not utilize polygalacturonate, unsaturated digalacturonate, or saturated digalacturonate. Genetic and physical evidence indicated that the Ogl- mutants and a KduD- recombinant contained a single copy of Tn5 and that Tn5 (Kmr) was linked to the mutant phenotypes. In the Ogl+ parents, basal levels of oligogalacturonate lyase were present in glycerol-grown cells and induced levels were present with saturated or unsaturated digalacturonate, while oligogalacturonate lyase was undetectable under similar conditions in Ogl- strains. Pectate lyase, polygalacturonase, and ketodeoxyuronate dehydrogenase were induced in an Ogl- strain by 3-deoxy-D-glycero-2,5-hexodiulosonate and by the enzymatic products of unsaturated digalacturonate but not by the digalacturonates. The KduD- strains lacked the dehydrogenase activity but in the presence of the digalacturonates produced higher levels of pectate lyase, polygalacturonase, and oligogalacturonate lyase than the KduD+ parents did. In the KduD- strains, pectate lyase and oligogalacturonate lyase were induced by unsaturated digalacturonate in a "gratuitous" manner, suggesting an intracellular accumulation of the inducer(s). We conclude that an intermediate(s) of the ketodeoxyuronate pathway induces pectate lyase, polygalacturonase, oligogalacturonate lyase, and ketodeoxyuronate dehydrogenase in E. chrysanthemi.  相似文献   

17.
Erwinia chrysanthemi 3937 secretes four major pectate lyase isoenzymes (PL, EC 4.2.2.2) and one endocellulase (Cx, EC 3.2.1.4). A genomic library of this strain was constructed in the Lambda L47-1 vector, and screened for the presence of PL and Cx on pectate and caboxymethylcellulose agar. Among the seven Cx-positive phage clones, three were shown to encode an enzyme of the same mol. wt. as the one found in the culture supernatant of strain 3937. The 34 PL-positive phage clones were analyzed by electrofocusing and could, according to the PL they produced, be arranged in five classes. Phages from three classes produced three different single PL, named PLb, c and d. No common fragment was evidenced between the inserts of the phages of these three classes. This demonstrated that, in strain 3937, PLb, C, and d were encoded by three different genes called pelB, C, and D. Furthermore, our results suggest the existence of two additional genes encoding PLa and e. In addition, a pectin methylesterase gene was found closely linked to pelD.  相似文献   

18.
The phytopathogenic enterobacterium Erwinia chrysanthemi excretes multiple isozymes of the plant tissue-disintegrating enzyme, pectate lyase (PL). Genes encoding PL were cloned from E. chrysanthemi CUCPB 1237 into Escherichia coli HB101 by inserting Sau3A-generated DNA fragments into the BamHI site of pBR322 and then screening recombinant transformants for the ability to sink into pectate semisolid agar. Restriction mapping of the cloned DNA in eight pectolytic transformants revealed overlapping portions of a 9.8-kilobase region of the E. chrysanthemi genome. Deletion derivatives of these plasmids were used to localize the pectolytic genotype to a 2.5-kilobase region of the cloned DNA. PL gene expression in E. coli was independent of vector promoters, repressed by glucose, and not induced by galacturonan. PL accumulated largely in the periplasmic space of E. coli. An activity stain used in conjunction with ultrathin-layer isoelectric focusing resolved the PL in E. chrysanthemi culture supernatants and shock fluids of E. coli clones into multiple forms. One isozyme with an apparent pI of 7.8 was produced at a far higher level in E. coli and was common to all of the pectolytic clones. Activity staining of renatured PL in sodium dodecyl sulfate-polyacrylamide gels revealed that this isozyme comigrated with the corresponding isozyme produced by E. chrysanthemi. The PL isozyme profiles produced by different clones and deletion derivative subclones suggest that the cloned region contains at least two PL isozyme structural genes. Pectolytic E. coli clones possessed a limited ability to macerate potato tuber tissues.  相似文献   

19.
20.
A marine Antarctic psychrotolerant bacterium (strain ANT/505), isolated from sea ice-covered surface water from the Southern Ocean, showed pectinolytic activity on citrus pectin agar. The sequencing of the 16S rRNA of isolate ANT/505 indicates a taxonomic affiliation to Pseudoalteromonas haloplanktis. The supernatant of this strain showed three different pectinolytic activities after growth on citrus pectin. By activity screening of a genomic DNA library of isolate ANT/505 in Escherichia coli, two different pectinolytic clones could be isolated. Subcloning and sequencing revealed two open reading frames (ORF) of 1,671 and 1,968 nt, corresponding to proteins of 68 and 75 kDa, respectively. The deduced amino acid sequence of the two ORFs showed homology to pectate lyases from Erwinia chrysanthemi and Aspergillus nidulans. The pectate lyases contain signal peptides of 17 and 26 amino acids that were correctly processed after overexpression in E. coli BL21. Both enzymes were purified by anionic exchange chromatography. Maximal enzymatic activities for both pectate lyases were observed at 30 degrees C and a pH range of 9 to 10. The Km values of both lyases for pectate and citrus pectin were 1 g l(-1) and 5 g l(-1), respectively. Calcium was required for activity on pectic substrates, whereas the addition of 1 mM ethylenediaminetetraacetic acid (EDTA) resulted in complete inhibition of the enzymes. These two enzymes represent the first pectate lyases isolated and characterized from a cold-adapted marine bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号