首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) is overexpressed in several tissues of individuals affected by type 2 diabetes. In intact cells and in transgenic animal models, PED/PEA-15 overexpression impairs insulin regulation of glucose transport, and this is mediated by its interaction with the C-terminal D4 domain of phospholipase D1 (PLD1) and the consequent increase of protein kinase C-alpha activity. Here we show that interfering with the interaction of PED/PEA-15 with PLD1 in L6 skeletal muscle cells overexpressing PED/PEA-15 (L6(PED/PEA-15)) restores insulin sensitivity. Surface plasmon resonance and ELISA-like assays show that PED/PEA-15 binds in vitro the D4 domain with high affinity (K(D) = 0.37 +/- 0.13 mum), and a PED/PEA-15 peptide, spanning residues 1-24, PED-(1-24), is able to compete with the PED/PEA-15-D4 recognition. When loaded into L6(PED/PEA-15) cells and in myocytes derived from PED/PEA-15-overexpressing transgenic mice, PED-(1-24) abrogates the PED/PEA-15-PLD1 interaction and reduces protein kinase C-alpha activity to levels similar to controls. Importantly, the peptide restores insulin-stimulated glucose uptake by approximately 70%. Similar results are obtained by expression of D4 in L6(PED/PEA-15). All these findings suggest that disruption of the PED/PEA-15-PLD1 molecular interaction enhances insulin sensitivity in skeletal muscle cells and indicate that PED/PEA-15 as an important target for type 2 diabetes.  相似文献   

2.
Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1). Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4) restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15) by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance.  相似文献   

3.
4.
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.  相似文献   

5.
6.
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.  相似文献   

7.
The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from TgPED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1EPED/PEA-15). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1EPED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1EPED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.  相似文献   

8.
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.  相似文献   

9.
胰岛素反应性的葡萄糖转运蛋白4(glucose transporter 4,GLUT4)在葡萄糖的摄取和代谢过程中发挥着重要作用。GLUT4蛋白表达水平直接影响机体葡萄糖的利用。肌细胞增强因子2(myocyte enhancer factor 2,MEF2)、过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptors,PPARs)、CCAAT增强子结合蛋白α(CCAAT enhancer binding protein α,C/EBP-α)、固醇类反应元件结合蛋白1c(sterol response element binding protein 1c,SREBP-1c)等转录因子可以上调或下调Glut4基因转录。激素、代谢以及一些病理状态可以通过改变转录因子的量或活性影响Glut4。本文综述了在Glut4基因表达中发挥作用的转录因子,以及在特定的生理或病生理状态下Glut4基因表达调控的机制。  相似文献   

10.
OBJECTIVE: To investigate the effects of high-fat feeding on the expression and activity of AMPK in rats' skeletal muscle. METHODS: Total 40 male Wistar rats were randomly divided into three groups and received either a rat maintenance diet (Control group) or an isocaloric rich-fat diet (HF group and MET group) for five months. Metformin was administered orally with the daily dose of 300mg in MET group during the last month of high-fat feeding. Hyperinsulinemic-euglycemic clamp study was performed to estimate whole-body insulin sensitivity. The ability of insulin-stimulated glucose uptake in isolated skeletal muscle was detected just before execution. mRNA levels of AMPKa1, AMPKa2, and Glut4 of rats' skeletal muscle were determined using real-time PCR. Protein contents of AMPKa, P-AMPKa, P-ACC, and Glut4 in rats' skeletal muscle were measured using Western blot. RESULTS: (1) Hyperinsulinemic-euglycemic clamp study revealed a significantly impaired insulin action at the whole-body level after high-fat feeding (p<0.01). Also, both basal and insulin-stimulated glucose uptake in isolated skeletal muscle decreased after high-fat feeding (p<0.05), indicating onset of high-fat induced insulin resistance. (2) Five months of high-fat treatment induced a significant decrease of AMPKa protein contents and AMPKa2 mRNA levels in rats' skeletal muscles (p<0.05), while it did not alter AMPKa1 mRNA levels. Protein levels of P-AMPKa also decreased after high-fat feeding (p<0.01). These data suggest that high-fat exposure might impair AMPKa expression and activities. (3) P-ACC protein contents, mRNA and protein levels of Glut4 in rats' skeletal muscles also decreased after high-fat treatment (p<0.05). (4) Compared with HF group, although no significant alternations of AMPKa expression in rats' skeletal muscles were detected, P-AMPKa levels revealed a 162% increase after metformin treatment (p<0.05), demonstrating the AMPK-activating effect of metformin. Accompanied with activation of AMPKa, rats in MET group exhibited significantly elevated P-ACC contents, Glut4 mRNA and protein levels, and an obviously enhanced insulin sensitivity at both whole-body and skeletal muscle levels (p<0.05). CONCLUSIONS: High-fat feeding impaired both the expression and activities of AMPKa, while activating AMPKa by metformin obviously ameliorated high-fat induced insulin resistance, thus indicating a possible role of AMPKa in lipotoxicity.  相似文献   

11.
Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D.  相似文献   

12.
Skeletal muscle is the major site of glucose disposal. Promoting glucose uptake into this tissue may attenuate the insulin resistance that precedes type 2 diabetes. However, the anti-diabetic effect of marine algae on glucose uptake and metabolism in skeletal muscle remains poorly understood. Here, we report the glucose uptake effects of octaphlorethol A (OPA), a novel phenolic compound isolated from Ishige foliacea, on skeletal muscle cells. OPA increased glucose uptake in differentiated L6 rat myoblast cells in a dose-dependent manner relative to the control. In addition, we found that OPA increased glucose transporter 4 (Glut4) translocation to the plasma membrane. Furthermore, we also demonstrated these OPA effects essentially depended on the protein kinase B (Akt) and AMP-activated protein kinase (AMPK) activation. In summary, PI3-K/Akt and AMPK activation were involved in mediating the effects of OPA on glucose transport activation and insulin sensitivity. OPA can be further developed as a potential anti-diabetic therapy.  相似文献   

13.
Skeletal growth, taking place in the cartilaginous growth plates of long bones, consumes high levels of glucose for both metabolic and anabolic purposes. We previously showed that Glut4 is present in growing bone and is decreased in diabetes. In the present study, we examined the hypothesis that in bone, GLUT4 gene expression and function are regulated via the IGF-I receptor (IGF-IR) and that Glut4 plays an important role in bone growth. Insulin and IGF-I actions on skeletal growth and glucose uptake were determined using mandibular condyle (MC) organ cultures and MC-derived primary cell cultures (MCDC). Chondrogenesis was determined by following proliferation and differentiation activities using immunohistochemical (IHC) analysis of proliferating cell nuclear antigen and type II collagen expression, respectively. Overall condylar growth was assessed morphometrically. GLUT4 mRNA and protein levels were determined using in situ hybridization and IHC, respectively. Glut4 translocation to the cell membrane was assessed using confocal microscopy analysis of GFP-Glut4 fusion-transfected cells and immunogold and electron microscopy on MC sections; glucose uptake was assayed by 2-deoxyglucose (2-DOG) uptake. Both IGF-I and insulin-stimulated glucose uptake in MCDC, with IGF-I being tenfold more potent than insulin. Blockage of IGF-IR abrogated both IGF-I- and insulin-induced chondrogenesis and glucose metabolism. IGF-I, but not insulin, induced Glut4 translocation to the plasma membrane. Additionally, insulin induced both GLUT4 and IGF-IR gene expression and improved condylar growth in insulin receptor knockout mice-derived MC. Moreover, silencing of GLUT4 gene in MCDC culture abolished both IGF-I-induced glucose uptake and chondrocytic proliferation and differentiation. In growing bone, the IGF-IR pathway stimulates Glut4 translocation and enhances glucose uptake. Moreover, intact Glut4 cellular levels and translocation machinery are essential for early skeletal growth.  相似文献   

14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can trigger apoptosis in some tumor cells but not other tumor cells. To explore the signal transduction events in TRAIL-triggered apoptosis and its modulation in nontransfected tumor cells, we analyzed TRAIL-induced death-inducing signaling complex (DISC) in TRAIL-sensitive and -resistant glioma cells. Caspase-8 and caspase-10 were recruited to the DISC, where they were proteolytically activated to initiate apoptosis in TRAIL-sensitive glioma cells. Caspase-8 and caspase-10 were also recruited to the DISC in TRAIL-resistant cells, but their further activation was inhibited by two antiapoptotic proteins termed cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15kDa (PED/PEA-15). Both long and short forms of c-FLIP were recruited to the DISC, where the long form c-FLIP was cleaved to produce intermediate fragments. Of the three isoforms of PED/PEA-15 proteins, only the doubly phosphorylated form was expressed and recruited to the DISC in TRAIL-resistant cells, indicating that the phosphorylation status of PED/PEA-15 determines its recruitment in the cells. Treatment with calcium/calmodulin-dependent protein kinase inhibitor rescued TRAIL sensitivity in TRAIL-resistant cells, providing a potential new approach to sensitize the cells to TRAIL-induced apoptosis.  相似文献   

15.
16.
Hyperglycemia and skeletal muscle insulin resistance coexist in uncontrolled type 2 diabetes mellitus. Similar defects in insulin action were observed in glucose-infused, normal rats, a model of glucose toxicity. In these rats insulin-stimulated glucose uptake by skeletal muscle was decreased due to a post-receptor defect. We investigated whether the impaired glucose uptake resulted from a decrease in the abundance of the predominant muscle glucose transporter (GLUT4) mRNA and/or protein. GLUT4 protein abundance in the hyperglycemic rats was not different from the control group despite a 50% decrease in muscle glucose uptake. GLUT4 mRNA abundance was 2.5-fold greater in the hyperglycemic rats as compared to the control animals. We conclude that the coexistence of hyperglycemia and hyperinsulinemia results in (1) a defect in GLUT4 compartmentalization and/or functional activity and (2) a divergence between GLUT4 mRNA levels and translation.  相似文献   

17.
Overnourishment during the suckling period [small litter (SL)] results in the development of adult-onset obesity. To investigate the mechanisms that underlie the development of insulin resistance in the skeletal muscle of young and adult female SL rats, the litter size was reduced to 3 female pups/dam (SL) while the control litter had 12 pups/dam from the postnatal Day 3 until Day 21. Protein content, mRNA expression and methylation status of the promoter region of key components in the insulin signaling pathway were determined in the skeletal muscle of SL rats. Overnutrition during the suckling period resulted in increased body weight gains, hyperphagia and adult-onset obesity as well as increased levels of serum insulin, glucose and leptin in SL rats. No differences in the expression of total protein as well as tyrosine phosphorylation of insulin receptor β and glucose transporter 4 (Glut4) were observed in skeletal muscle between two groups at both ages. A significant decrease of total insulin receptor substrate 1 (IRS-1) and an increase in serine phosphorylation of IRS-1 were observed in skeletal muscle from adult SL rats. Hypermethylation of specific cytidyl-3',5'phospho-guanylyl (CpG) dinucleotides in the proximal promoter region was observed for the Irs1 and Glut4 genes, which correlated with the reduction in Irs1 and Glut4 mRNA levels in skeletal muscle of adult SL rats. Our results suggest that epigenetic modifications of the key genes involved in the insulin signaling pathway in skeletal muscle could result in the development of insulin resistance in SL female rats.  相似文献   

18.
19.
A reduced capacity for insulin to elicit increases in glucose uptake and metabolism in target tissues such as skeletal muscle is a common feature of obesity and diabetes. The association between lipid oversupply and such insulin resistance is well established, and evidence for mechanisms through which lipids could play a causative role in the generation of muscle insulin resistance is reviewed. While the effects of lipids may in part be mediated by substrate competition through the glucose-fatty acid cycle, interference with insulin signal transduction by lipid-activated signalling pathways is also likely to play an important role. Thus, studies of insulin resistance in Type 2 diabetes, obesity, fat-fed animals and lipid-treated cells have identified defects both at the level of insulin receptor-mediated tyrosine phosphorylation and at downstream sites such as protein kinase B (PKB) activation. Lipid signalling molecules can be derived from free fatty acids, and include diacylglycerol, which activates isozymes of the protein kinase C (PKC) family, and ceramide, which has several effectors including PKCs and a protein phosphatase. In addition, elevated lipid availability can increase flux through the hexosamine biosynthesis pathway which can also lead to activation of PKC as well as protein glycosylation and modulation of gene expression. The mechanisms giving rise to decreased insulin signalling include serine/threonine phosphorylation of insulin receptor substrate-1, but also direct inhibition of components such as PKB. Thus lipids can inhibit glucose disposal by causing interference with insulin signal transduction, and most likely by more than one pathway depending on the prevalent species of fatty acids.  相似文献   

20.
PEA-15/PED (phosphoprotein enriched in astrocytes 15 kDa/phosphoprotein enriched in diabetes) is a death effector domain-containing protein which is known to modulate apoptotic cell death. The mechanism by which PEA-15 inhibits caspase activation and increases ERK (extracellular-regulated kinase) activity is well characterized. Here, we demonstrate that PEA-15 is not only pivotal in the activation of the ERK pathway but also modulates JNK (c-Jun N-terminal kinase) signaling. Upon overexpression of PEA-15 in malignant glioma cells, JNK is potently activated. The PEA-15-induced JNK activation depends on the phosphorylation of PEA-15 at both phosphorylation sites (serine 104 and serine 116). The activation of JNK is substantially inhibited by siRNA-mediated down-regulation of endogenous PEA-15. Moreover, we demonstrate that glioma cells overexpressing PEA-15 show increased signs of autophagy in response to classical autophagic stimuli such as ionizing irradiation, serum deprivation, or rapamycin treatment. In contrast, the non-phosphorylatable mutants of PEA-15 are not capable of promoting autophagy. The inhibition of JNK abrogates the PEA-15-mediated increase in autophagy. In conclusion, our data show that PEA-15 promotes autophagy in glioma cells in a JNK-dependent manner. This might render glioma cells more resistant to adverse stimuli such as starvation or ionizing irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号