首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Strand breaks without DNA rearrangement in V (D)J recombination.   总被引:5,自引:6,他引:5       下载免费PDF全文
Somatic gene rearrangement of immunoglobulin and T-cell receptor genes [V(D)J recombination] is mediated by pairs of specific DNA sequence motifs termed signal sequences. In experiments described here, retroviral vectors containing V(D)J rearrangement cassettes in which the signal sequences had been altered were introduced into wild-type and scid (severe combined immune deficiency) pre-B cells and used to define intermediates in the V(D)J recombination pathway. The scid mutation has previously been shown to deleteriously affect the V(D)J recombination process. Cassettes containing a point mutation in one of the two signal sequences inhibited rearrangement in wild-type cells. In contrast, scid cells continued to rearrange these cassettes with the characteristic scid deletional phenotype. Using these mutated templates, we identified junctional modifications at the wild-type signal sequences that had arisen from strand breaks which were not associated with overall V(D)J rearrangements. Neither cell type was able to rearrange constructs which contained only a single, nonmutated, signal sequence. In addition, scid and wild-type cell lines harboring cassettes with mutations in both signal sequences did not undergo rearrangement, suggesting that at least one functional signal sequence was required for all types of V(D)J recombination events. Analysis of these signal sequence mutations has provided insights into intermediates in the V(D)J rearrangement pathway in wild-type and scid pre-B cells.  相似文献   

2.
3.
Han JO  Steen SB  Roth DB 《Molecular cell》1999,3(3):331-338
V(D)J recombination, normally an intramolecular process, assembles immunoglobulin and T cell receptor genes from V, D, and J coding segments. Oncogenic chromosome translocations can result from aberrant rearrangements, such as occur in intermolecular V(D)J recombination. How this is normally prevented remains unclear; DNA cleavage, joining, or both could be impaired when the recombination signal sequences (RSS) are located in trans, on separate DNA molecules. Here, we show that both trans cleavage and joining of signal ends occur efficiently in vivo. Unexpectedly, trans joining of coding ends is severely impaired (100-to 1000-fold), indicating that protection against intermolecular V(D)J recombination is established at the joining step. These findings suggest a novel surveillance mechanism for eliminating cells containing aberrant V(D)J rearrangements.  相似文献   

4.
V(D)J recombination plays a prominent role in the generation of the antigen receptor repertoires of B and T lymphocytes. It is also likely to be involved in the formation of chromosomal translocations, some of which may result from interchromosomal recombination. We have investigated the potential of the V(D)J recombination machinery to perform intermolecular recombination between two plasmids, either unlinked or linked by catenation. In either case, recombination occurs in trans to yield signal and coding joints, and the results do not support the existence of a mechanistic block to the formation of coding joints in trans. Instead, we observe that linearization of the substrate, which does not alter the cis or trans status of the recombination signals, causes a specific and dramatic reduction in coding joint formation. This unexpected result leads us to propose a "release and recapture" model for V(D)J recombination in which coding ends are frequently released from the postcleavage complex and the efficiency of coding joint formation is influenced by the efficiency with which such ends are recaptured by the complex. This implies the existence of mechanisms, operative during recombination of chromosomal substrates, that act to prevent coding end release or to facilitate coding end recapture.  相似文献   

5.
Raghavan SC  Tong J  Lieber MR 《DNA Repair》2006,5(2):278-285
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.  相似文献   

6.
The diversity of immunoglobulins and T cell receptors is largely due to the assembly of functional genes from separate segments. The mechanism by which these gene fragments are joined is starting to be deciphered, with broken DNA molecules that may be intermediates in the reaction providing a new clue.  相似文献   

7.
Lieber MR  Yu K  Raghavan SC 《DNA Repair》2006,5(9-10):1234-1245
When a single double-strand break arises in the genome, nonhomologous DNA end joining (NHEJ) is a major pathway for its repair. When double-strand breaks arise at two nonhomologous sites in the genome, NHEJ also appears to be a major pathway by which the translocated ends are joined. The mechanism of NHEJ is briefly summarized, and alternative enzymes are also discussed. V(D)J recombination and class switch recombination are specialized processes designed to create double-strand DNA breaks at specific locations in the genomes of lymphoid cells. Sporadic Burkitt's lymphoma and myelomas can arise due to translocation of the c-myc gene into the Ig heavy chain locus during class switch recombination. In other lymphoid neoplasms, the RAG complex can create double-strand breaks that result in a translocation. Such RAG-generated breaks occur at very specific nucleotides that are directly adjacent to sequences that resemble canonical heptamer/nonamer sequences characteristic of normal V(D)J recombination. This occurs in some T cell leukemias and lymphomas. The RAG complex also appears capable of recognizing regions for their altered DNA structure rather than their primary sequence, and this may account for the action by RAGs at some chromosomal translocation sites, such as at the bcl-2 major breakpoint region in the follicular lymphomas that arise in B lymphocytes.  相似文献   

8.
Lieber MR  Ma Y  Pannicke U  Schwarz K 《DNA Repair》2004,3(8-9):817-826
The vertebrate immune system generates double-strand DNA (dsDNA) breaks to generate the antigen receptor repertoire of lymphocytes. After those double-strand breaks have been created, the DNA joinings required to complete the process are carried out by the nonhomologous DNA end joining pathway, or NHEJ. The NHEJ pathway is present not only in lymphocytes, but in all eukaryotic cells ranging from yeast to humans. The NHEJ pathway is needed to repair these physiologic breaks, as well as challenging pathologic breaks that arise from ionizing radiation and oxidative damage to DNA.  相似文献   

9.
Cryptic signals and the fidelity of V(D)J joining.   总被引:5,自引:3,他引:5       下载免费PDF全文
V(D)J recombination is responsible for the de novo creation of antigen receptor genes in T- and B-cell precursors. To the extent that lymphopoiesis takes place throughout an animal's lifetime, recombination errors present an ongoing problem. One type of aberrant rearrangement ensues when DNA sequences resembling a V(D)J joining signal are targeted by mistake. This study investigates the type of sequence likely to be subject to mistargeting, the level of joining-signal function associated with these sequences, and the number of such cryptic joining signals in the genome.  相似文献   

10.
Wild-type V(D)J recombination in scid pre-B cells.   总被引:14,自引:8,他引:6       下载免费PDF全文
Homozygous mutation at the scid locus in the mouse results in the aberrant rearrangement of immunoglobulin and T-cell receptor gene segments. We introduced a retroviral vector containing an inversional immunoglobulin rearrangement cassette into scid pre-B cells. Most rearrangements were accompanied by large deletions, consistent with previously characterized effects of the scid mutation. However, two cell clones were identified which contained perfect reciprocal fragments and wild-type coding joints, documenting, on a molecular level, the ability of scid pre-B cells to generate functional protein-coding domains. Subsequent rearrangement of the DGR cassette in one of these clones was accompanied by a deletion, suggesting that this cell clone had not reverted the scid mutation. Indeed, induced rearrangement of the endogenous kappa loci in these two cell clones resulted in a mixture of scid and wild-type V-J kappa joints, as assayed by a polymerase chain reaction and DNA sequencing. In addition, three immunoglobulin mu- scid pre-B cell lines showed both scid and wild-type V-J kappa joins. These experiments strongly suggest that the V(D)J recombinase activity in scid lymphoid cells is diminished but not absent, consistent with the known leakiness of the scid mutation.  相似文献   

11.
The existence of somatic, site-specific recombination in the central nervous system (CNS) has long been hypothesized but has been difficult to investigate experimentally. The finding that RAG-1, which is thought to encode a component of the site-specific recombination machinery of the immune system, is transcribed in the central nervous system (J.J.M. Chun et al., 1991, Cell 64:189-200), has renewed interest in this issue. Two groups (M. Kawaichi et al., 1991, J Biol Chem 266:18,376-18,394; M. Matsuoka et al., 1991, Science 254:81-86) have now reported the results of transgenic mouse experiments designed to determine whether cells of the CNS can perform a site-specific recombination reaction similar to that of lymphocytes. Despite extensive similarities in the design of the two experiments, they yielded discordant results and contradictory conclusions. An analysis of the two studies suggests some explanations for the discrepancies and leads us to two conclusions: first, that the CNS does not carry out the same somatic, site-specific recombination reaction as is found in the immune system and, second, that the question of whether other site-specific recombination processes occur in the brain remains open and largely unaddressed.  相似文献   

12.
Novel strand exchanges in V(D)J recombination   总被引:37,自引:0,他引:37  
S M Lewis  J E Hesse  K Mizuuchi  M Gellert 《Cell》1988,55(6):1099-1107
We describe novel products of V(D)J recombination in which signal sequences become joined to coding elements, in contrast to the standard reaction whose products are junctions of two signal sequences or two coding elements. In this variant reaction, the recombination machinery evidently recognizes signal sequences and introduces strand breaks at the normal positions, but then connects the elements in unusual combinations. The lack of fixed directionality indicates that recombination sites are not uniquely aligned when strand exchange occurs. The discovery of these variant junctions suggests a model for the evolution of the antigen receptor loci.  相似文献   

13.
Unintended DNA rearrangements in a differentiating lymphocyte can have severe, oncogenic consequences, but the mechanisms for avoiding pathogenic outcomes in V(D)J recombination are not well understood. The first level at which fidelity is instituted is in discrimination by the recombination proteins between authentic and inauthentic recombination signal sequences. Nevertheless, this discrimination is not absolute and cannot fully eliminate targeting errors. To learn more about the basis of specificity during V(D)J recombination, we have investigated whether it is possible for the recombination machinery to detect an inaccurately targeted sequence subsequent to cleavage. These studies indicate that even postcleavage steps in V(D)J recombination are sequence specific and that noncanonical sequences will not efficiently support the resolution of recombination intermediates in vivo. Accordingly, interventions after a mistargeting event conceivably occur at a late stage in the joining process and the likelihood may well be crucial to enforcing fidelity during antigen receptor gene rearrangement.  相似文献   

14.
15.
Antigen receptor genes are assembled during lymphoid development by a specialized recombination reaction normally observed only in cells of the vertebrate immune system. Here, we show that expression in Saccharomyces cerevisiae of murine RAG1 and RAG2, the lymphoid-specific components of the V(D)J recombinase, is sufficient to induce V(D)J cleavage and rejoining in this lower eukaryote. The RAG proteins cleave recombination substrates introduced into yeast cells, generating signal ends that can be joined to form signal joints. These signal joints are precise, as in mammalian cells, and their formation is dependent on a yeast nonhomologous end-joining protein, the XRCC4 homolog LIF1. Moreover, joining of SmaI-generated blunt ends is generally imprecise in the yeast strain used here, suggesting that the RAG proteins influence signal-end joining. Cleaved signal ends are also transposed into new sites in DNA, allowing RAG-induced transposition to be studied in vivo.  相似文献   

16.
V(D)J recombination and class switch recombination are the two DNA rearrangement events used to diversify the mouse and human antibody repertoires. While their double strand breaks (DSBs) are initiated by different mechanisms, both processes use non-homologous end joining (NHEJ) in the repair phase. DNA mismatch repair elements (MSH2/MSH6) have been implicated in the repair of class switch junctions as well as other DNA DSBs that proceed through NHEJ. MSH2 has also been implicated in the regulation of factors such as ATM and the MRN (Mre11, Rad50, Nbs1) complex, which are involved in V(D)J recombination. These findings led us to examine the role of MSH2 in V(D)J repair. Using MSH2-/- and MSH2+/+ mice and cell lines, we show here that all pathways involving MSH2 are dispensable for the generation of an intact pre-immune repertoire by V(D)J recombination. In contrast to switch junctions and other DSBs, the usage of terminal homology in V(D)J junctions is not influenced by MSH2. Thus, whether the repair complex for V(D)J recombination is of a canonical NHEJ type or a separate microhomology-mediated-end joining (MMEJ) type, it does not involve MSH2. This highlights a distinction between the repair of V(D)J recombination and other NHEJ reactions.  相似文献   

17.
During lymphocyte Ag receptor gene assembly, DNA cleavage by the Rag proteins generates pairs of coding and signal ends that are normally joined into coding joints and signal joints, respectively, by the classical nonhomologous end-joining (NHEJ) pathway of DNA double strand break repair. Coding and signal ends can also be aberrantly joined to each other, generating hybrid joints, through NHEJ or through NHEJ-independent pathways, such as Rag-mediated transposition. Hybrid joints do not participate in the formation of functional Ag receptor genes and can alter the configuration of Ag receptor loci in ways that limit subsequent productive rearrangements. The formation of these nonfunctional hybrid joints occurs rarely in wild type lymphocytes, demonstrating that mechanisms exist to limit both the NHEJ-dependent and the NHEJ-independent joining of a signal end to a coding end. In contrast to wild-type cells, hybrid joint formation occurs at high levels in ataxia telangiectasia mutated (Atm)-deficient lymphocytes, suggesting that Atm functions to limit the formation of these aberrant joints. In this study, we show that hybrid joint formation in Atm-deficient cells requires the NHEJ proteins Artemis, DNA-PKcs, and Ku70, demonstrating that Atm functions primarily by modulating the NHEJ-dependent, and not the NHEJ-independent, joining of coding ends to signal ends.  相似文献   

18.
The vertebrate immune system has evolved an elegant mechanism for generating an enormous diversity in antigen receptor binding specificity from a limited amount of genetic information. Recent advances are rapidly increasing our understanding of this unusual site-specific DNA rearrangement that assembles the antigen receptor genes during lymphoid development.  相似文献   

19.
V(D)J recombination: in vitro coding joint formation.   总被引:1,自引:4,他引:1       下载免费PDF全文
Antigen receptor genes are assembled through a mechanism known as V(D)J recombination, which involves two different joining reactions: signal and coding joining. Formation of these joints is essential for antigen receptor assembly as well as maintaining chromosomal integrity. Here we report on a cell-free system for coding joint formation using deletion and inversion recombination substrates. In vitro coding joint formation requires RAG1, RAG2, and heat-labile factors present in the nuclear extract of nonlymphoid cells. Both inversion- and deletion-mediated coding joint reactions produce diverse coding joints, with deletions and P nucleotide addition. We also show that deletion-mediated coding joint formation follows the 12/23 rule and requires the catalytic subunit of DNA-dependent protein kinase.  相似文献   

20.
Mechanistic constraints on diversity in human V(D)J recombination.   总被引:12,自引:1,他引:11       下载免费PDF全文
We have analyzed a large collection of coding junctions generated in human cells. From this analysis, we infer the following about nucleotide processing at coding joints in human cells. First, the pattern of nucleotide loss from coding ends is influenced by the base composition of the coding end sequences. AT-rich sequences suffer greater loss than do GC-rich sequences. Second, inverted repeats can occur at ends that have undergone nucleolytic processing. Previously, inverted repeats (P nucleotides) have been noted only at coding ends that have not undergone nucleolytic processing, this observation being the basis for a model in which a hairpin intermediate is formed at the coding ends early in the reaction. Here, inverted repeats at processed coding ends were present at approximately twice the number of junctions as P nucleotide additions. Terminal deoxynucleotidyl transferase (TdT) is required for the appearance of the inverted repeats at processed ends (but not full-length coding ends), yet statistical analysis shows that it is virtually impossible for the inverted repeats to be polymerized by TdT. Third, TdT additions are not random. It has long been noted that TdT has a G utilization preference. In addition to the G preference, we find that TdT adds strings of purines or strings of pyrimidines at a highly significant frequency. This tendency suggests that nucleotide-stacking interactions affect TdT polymerization. All three of these features place constraints on the extent of junctional diversity in human V(D)J recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号