首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the response in knockout mice lacking the b-series (G(D2), G(D1b), G(T1b) and G(Q1b)) gangliosides against Clostridium botulinum (types A, B and E) and tetani toxins. We found that botulinum toxins were fully toxic, while tetanus toxin was much less toxic in the knockout mice. Combining the present results with our previous finding that tetanus toxin and botulinum types A and B toxins showed essentially no toxic activity in the knockout mice lacking both the a-series and b-series gangliosides (complex gangliosides), we concluded that the b-series gangliosides is the major essential substance for tetanus toxin, while b-series gangliosides may be not the essential substance for botulinum toxins, at the initial step during the intoxication process in mouse.  相似文献   

2.
Intravenous injection of purified tetanus toxin(1000-0.06 μg) killed mice within minutes(20–450 min), causing flaccid paralysis indistinguishable from that in botulinum intoxication: a linear relation was found between the log of the toxin dose and that of death time(survival time). The dose and route dependences of the manifestations of the spastic paralysis typical of classical tetanus and of the acute botulinum-like flaccid paralysis were studied in relation to the death time. Treatment of the toxin with trypsin or gangliosides did not affect its acute botulinum-like toxicity. Theophylline delayed the time of acute death due to the botulinum-like intoxication in mice caused by tetanus toxin and provided some protection.  相似文献   

3.
Binding of Clostridium botulinum neurotoxin to gangliosides   总被引:3,自引:0,他引:3  
The binding characteristics of Clostridium botulinum neurotoxins of types B, C1, and F to gangliosides was studied by thin layer chromatography plate and microtiter plate methods at low (10 mM NaCl in 10 mM Tris-HCl buffer, pH 7.2) or high (150 mM NaCl in 10 mM Tris-HCl buffer, pH 7.2) ionic strengths and at 0 or 37 degrees C. The three types of toxins bound exclusively to three kinds of gangliosides, GD1a, GD1b, and GT1b, in both the thin layer chromatography plate and the microtiter plate methods. Type C1 toxin bound to the three gangliosides under all the conditions, while type B and F toxins bound only at low ionic strength and 37 degrees C. At low ionic strength, the binding kinetics for the three toxins was monophasic in Scatchard plots, and the association constants obtained in the microtiter plate system were 2-4 X 10(8) M-1. In contrast, the binding kinetics of type C1 toxin in high ionic strength was biphasic in the Scatchard plot, and two association constants were obtained in the microtiter plate system. The heavy chain facilitated the binding of the toxin to the gangliosides. These results indicate that different types of botulinum toxins bind to the gangliosides under different optimal conditions and that gangliosides may not be the common receptor for all types of botulinum toxins. The gangliosides may bind to type C1 toxin together with other potential receptor(s) on synaptosomal membranes.  相似文献   

4.
Botulinum toxins are metalloproteases that act inside nerve terminals and block neurotransmitter release through their cleavage of components of the exocytosis machinery. These toxins are used to treat human diseases that are characterized by hyperfunction of cholinergic terminals. Recently, evidence has accumulated that gangliosides and synaptic vesicle proteins cooperate to mediate toxin binding to the presynaptic terminal. The differential distribution of synaptic vesicle protein receptors, gangliosides and toxin substrates in distinct neuronal populations opens up the possibility of using different serotypes of botulinum toxins for the treatment of central nervous system diseases caused by altered activity of selected neuronal populations.  相似文献   

5.
Abstract— The effects of botulinum and tetanus toxins on the activity of choline acetyltransferase present in the motor nerve terminals of fast and slow skeletal muscle in the mouse were investigated. There was no change in the activities of choline acetyltransferase in either muscle after the injection of botulinum toxin but tetanus toxin caused a rise in the activity of the enzyme in fast muscle. Botulinum toxin is known to inhibit the release of acetylcholine and whilst neuromuscular transmission is blocked the motor nerves sprout and form new end-plates. Tetanus toxin has been shown to cause hyperactivity of motor neurons. The nerve growth caused by the botulinum toxin did not result in increased choline acetyltransferase levels in the muscles, whereas the synaptic hyperactivity caused by tetanus was associated with increased enzyme levels.  相似文献   

6.
7.
Chromosomal DNAs were extracted from Clostridium butyricum strain BL6340 and Clostridium botulinum type E strain Mashike. The 6.0 Kbp fragment coding for the entire light chain (L) component and the N-terminus of heavy chain (H) component of botulinum type E toxin was obtained from each extracted DNAs after digestion with HindIII. The entire nucleotide sequences for the light chain components of these cloned genes were determined, and the derived amino acid sequences were compared to each other, and with those of botulinum type A, C1, D, and tetanus toxins reported previously. The cleavage site of L and H components of type E toxin was presumed to be Arg-422. In a total of 422 amino acid residues of L component, 17 residues were different between butyricum and type E toxins, and all these differences were found within 200 residues of N-terminus of L component. On the contrary, five regions showing highly homologous sequences were found in L components among these six toxins, and one more region between botulinum type E and tetanus toxins.  相似文献   

8.
The actions of tetanus toxin, botulinum A toxin, and black widow spider venom on the release of methionine-enkephalin-like immunoreactivity have been studied; a particulate fraction prepared from rat striata was used. Depending on the duration of preincubation, tetanus toxin diminished the release evoked by veratridine (50 microM final concentration), and abolished it at final concentrations between 0.1 and 1 micrograms/ml. Botulinum A toxin was about 10 to 20 times less potent. Heating or pretreatment with antitoxin inactivated the clostridial toxins. The particulate fraction pretreated with V. cholerae neuraminidase retained its toxin sensitivity. Tetanus toxin also depressed the release due to sea anemone toxin II and high K+. Spider venom stimulated the release in a concentration-dependent manner and required the presence of Ca2+; its effects were depressed by tetanus toxin. These results support the view that both clostridial toxins and spider venom act as broad-range presynaptic neurotoxins on peptidergic transmitter systems.  相似文献   

9.
10.
Tetanus and botulinum neurotoxins are the most potent toxins known. They bind to nerve cells, penetrate the cytosol and block neurotransmitter release. Comparison of their predicted amino acid sequences reveals a highly conserved segment that contains the HexxH zinc binding motif of metalloendopeptidases. The metal content of tetanus toxin was then measured and it was found that one atom of zinc is bound to the light chain of tetanus toxin. Zinc could be reversibly removed by incubation with heavy metal chelators. Zn2+ is coordinated by two histidines with no involvement in cysteines, suggesting that it plays a catalytic rather than a structural role. Bound Zn2+ was found to be essential for the tetanus toxin inhibition of neurotransmitter release in Aplysia neurons injected with the light chain. The intracellular activity of the toxin was blocked by phosphoramidon, a very specific inhibitor of zinc endopeptidases. Purified preparations of light chain showed a highly specific proteolytic activity against synaptobrevin, an integral membrane protein of small synaptic vesicles. The present findings indicate that tetanus toxin, and possibly also the botulinum neurotoxins, are metalloproteases and that they block neurotransmitter release via this protease activity.  相似文献   

11.
Primers designed to conserved regions of botulinum and tetanus clostridial toxins were used to amplify DNA fragments from non-proteolytic Clostridium botulinum type F (202F) DNA using polymerase chain reaction technology. The fragments were cloned and the complete nucleotide sequence of the gene encoding type F toxin determined. Analysis of the nucleotide sequence demonstrated the presence of an open frame encoding a protein of 1274 amino acids, similar to other botulinum neurotoxins. Upstream of the toxin gene is the end of an open reading frame which encodes the C-terminus of a protein with homology to non-toxic-non-hemagglutinin component of type C progenitor toxin.  相似文献   

12.
Abstract: Crude and crystalline botulinum toxin type A have been compared for their ability to inhibit [14C]ACh release from synaptosomes preloaded with [14C]choline. The toxin preparations exhibited similar dose-response curves, with maximal inhibition at 105 mouse LD50/ml after 60 min preincubation. The time course for the inhibitory action of the toxin showed that inhibition develops almost linearly over this time period. However, free toxin could be removed from the synaptosome suspension after 15 min without altering the subsequent development of inhibition of [14C]ACh release, which suggests that the toxin is rapidly fixed by synaptosomes and that fixation alone cannot account for the latency of its action. Incorporation of gangliosides into synaptosomes by prior preincubation failed to increase the potency of the toxin, which implies that gangliosides do not serve as the membrane receptor for the toxin. Treatment of botulinum toxin with dithiothreitol greatly diminished its ability to inhibit [14C]ACh release and it is suggested that botulinum toxin may be analogous to other bacterial toxins in its structure and mode of action.  相似文献   

13.
A pool of synthetic oligonucleotides was used to identify the gene encoding tetanus toxin on a 75-kbp plasmid from a toxigenic non-sporulating strain of Clostridium tetani. The nucleotide sequence contained a single open reading frame coding for 1315 amino acids corresponding to a polypeptide with a mol. wt of 150,700. In the mature toxin molecule, proline (2) and serine (458) formed the N termini of the 52,288 mol. wt light chain and the 98,300 mol. wt heavy chain, respectively. Cysteine (467) was involved in the disulfide linkage between the two subchains. The amino acid sequences of the tetanus toxin revealed striking homologies with the partial amino acid sequences of botulinum toxins A, B, and E, indicating that the neurotoxins from C. tetani and C. botulinum are derived from a common ancestral gene. Overlapping peptides together covering the entire tetanus toxin molecule were synthesized in Escherichia coli and identified by monoclonal antibodies. The promoter of the toxin gene was localized in a region extending 322 bp upstream from the ATG codon and was shown to be functional in E. coli.  相似文献   

14.
Abstract— —Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [14C]glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [14C]glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells.
Pronounced binding of 125I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI).
Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased.
It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted.  相似文献   

15.
Botulinum neurotoxins (BoNTs) target presynaptic nerve terminals by recognizing specific neuronal surface receptors. Two homologous synaptic vesicle membrane proteins, synaptotagmins (Syts) I and II, bind toxins BoNT/B and G. However, a direct demonstration that Syts I/II mediate toxin binding and entry into neurons is lacking. We report that BoNT/B and G fail to bind and enter hippocampal neurons cultured from Syt I knockout mice. Wild-type Syts I and II (but not Syt I loss-of-function toxin-binding domain mutants) restored binding and entry of BoNT/B and G in Syt I–null neurons, thus demonstrating that Syts I/II are protein receptors for BoNT/B and G. Furthermore, mice lacking complex gangliosides exhibit reduced sensitivity to BoNT/G, and binding and entry of BoNT/A, B, and G into hippocampal neurons lacking gangliosides is diminished. These data suggest that gangliosides are the shared coreceptor for BoNT/A, B, and G, supporting a double-receptor model for these three BoNTs for which the protein receptors are known.  相似文献   

16.
17.
125I-Tetanus toxin is bound by basolateral membranes from rabbit kidneys. Fixation is specific, as it is minimally inhibited by the nonbinding (fragment B) moiety of tetanus toxin, whereas the binding moiety (fragment C) is equivalent to the native toxin in inhibiting fixation. Competition is also pronounced with mildly toxoided toxin. Association and dissociation of 125I-toxin are delayed in kidney when compared to brain membranes. The binding sites in kidney membranes are partially sensitive to neuraminidase and resist heating to 56 degrees C, in contrast to those in brain membranes which are very sensitive to both treatments. The binding sites of the two preparations can be discriminated further by variation of the ionic environment. Sodium dodecyl sulfate-disc gel electrophoresis followed by transfer to nitrocellulose, and TLC with consecutive overlay indicate that tetanus toxin exclusively binds to long-chain gangliosides from rat brain. Binding sites in kidney membranes from rabbits and rats can be made visible by the overlay technique. They are apparently heterogeneous and more hydrophobic. We conclude that rabbit kidney contains binding sites for tetanus toxin which resemble gangliosides but differ from the major gangliosides in brain both chemically and with respect to their interaction with tetanus toxin.  相似文献   

18.
The interaction of botulinum neurotoxins serotypes A, B and E (from Clostridium botulinum) and of tetanus neurotoxin (from Clostridium tetani) with the surface of liposomes made of different lipid compositions was studied by photolabelling with a radioiodinated photoactive phosphatidylethanolamine analogue [125I-dipalmitoyl (3,4-azidosalicylamido)phosphatidylethanolamine]. When the vesicles were made of negatively charged lipids (asolectin), each of these neurotoxic proteins was radioiodinated, thus providing evidence for their attachment to the membrane surface. The presence of gangliosides on liposome membranes enhanced fixation of the neurotoxic proteins to the lipid vesicle surface. Both the heavy and light chains of the clostridial neurotoxins were involved in the attachment to the lipid bilayer surface. Each of the toxins tested here attached poorly to liposomes made of zwitterionic lipids (egg phosphatidylcholine), even when polysialogangliosides were present. The data suggest that the binding of botulinum and tetanus neurotoxins to their target neuronal cells involves negatively charged lipids and polysialogangliosides on the cell membrane.  相似文献   

19.
Role of membrane gangliosides in the binding and action of bacterial toxins   总被引:31,自引:0,他引:31  
Summary Gangliosides are complex glycosphingolipids that contain from one to several residues of sialic acid. They are present in the plasma membrane of vertebrate cells with their oligosaccharide chains exposed to the external environment. They have been implicated as cell surface receptors and several bacterial toxins have been shown to interact with them. Cholera toxin, which mediates its effects on cells by activating adenylate cyclase, bind with high affinity and specificity to ganglioside GM1. Toxin-resistant cells which lack GM1 can be sensitized to cholera toxin by treating them with GM1. Cholera toxin specifically protects GM1 from cell surface labeling procedures and only GM1 is recovered when toxin-receptor complexes are isolated by immunoadsorption. These results clearly demonstrate that GM1 is the specific and only receptor for cholera toxin. Although cholera toxin binds to GM1 on the external side of the plasma membrane, it activates adenylate cyclase on the cytoplasmic side of the membrane by ADP-ribosylation of the regulatory component of the cyclase. GM1 in addition to functioning as a binding site for the toxin appears to facilitate its transmembrane movement. The heat-labile enterotoxin ofE. coli is very similar to cholera toxin in both form and function and can also use GM1 as a cell surface receptor. The potent neurotoxin, tetanus toxin, has a high affinity for gangliosides GD1b and GT1b and binds to neurons which contain these gangliosides. It is not yet clear whether these gangliosides are the physiological receptors for tetanus toxin. By applying the techniques that established GM1 as the receptor for cholera toxin, the role of gangliosides as receptors for tetanus toxin as well as physiological effectors may be elucidated.  相似文献   

20.
Bacterial protein toxins and their fragments have been isolated and purified for various reasons, including the development of efficient vaccines and for methods of identification of bacterial agents causing disease. This activity continues today but a new area of bacterial protein toxin research has recently emerged. Since it was shown that toxin molecules comprise several types of biological activity within their structural domains, it was suggested to use these domains (and their combinations) as biochemical tools for developing novel agents for disease imaging and and/or relieving. In this way eukaryotic cell-receptor specific fusion toxins have been developed to prevent malignancy in human. While human clinical trials of these preparations have only recently begun, the preliminary clinical findings are promising. Also fusion proteins which combine independent immunodominant epitopes from different antigens have also been developed thus opening a way for the generation of new vaccines for both human and veterinary use. Receptor binding fragments of microbial toxins when combined with other molecules may be useful in delivering these molecules into the cell. In this way novel agents may be developed with a potential for inducing specific changes at the molecular level for the correction of metabolic disorders causing human and animal diseases. Bacterial protein toxins such as anthrax, botulinum, cholera, pertussis and tetanus for which considerable progress has been achieved in structure-function analysis are promising candidates for such research. Particularly exciting appears the idea of extending this research to the cells of the nervous system, exploiting the unique specificity of the botulinum or tetanus toxin fragments which may bring long desired methods for treatment of various disorders of the nervous system. Data on functional domains of these toxins as well as methods of purification of the whole toxins and their fragments are considered in this review as they form a base for their further structure-function analysis and engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号