首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potentiometric, calorimetric, NMR and stopped-flow kinetic studies were performed on the palladium(II) complexes of thioether and/or nitrogen donor ligands. The ternary systems always contained a tridentate ligand (dien, terpy and dianions of dipeptides, GlyGly, GlyAla and GlyMet) and a monodentate thioether (AcMet). The stability constants of thioether complexes were obtained by indirect potentiometric measurements using uridine as a competitive ligand. The thermodynamic parameters revealed that selectivity of palladium(II) for thioether binding can be significantly influenced by the other donor atoms around the metal ion. [Pd(terpy)]2+ and [Pd(GlyMet)] had the lowest affinity for thioether binding and it was explained by steric and electronic effects. Ternary complexes of nitrogen donors have higher thermodynamic stability constants than the thioether complexes, but rate constants of the substitution reactions revealed that formation of thioether complexes is the faster reaction. As a consequence, the thermodynamic equilibrium state of a multicomponent system is characterized by the coordination of N-donors, which are formed via the existence of thioether-bonded intermediates.  相似文献   

2.
NMR spectroscopy has been used to observe the effects of the amine ligand on the rate of reaction of platinum diamine and triamine complexes with DNA and protein residues. Whereas [Pt(dien)Cl]Cl and [Pt(dien)(D(2)O)](2+) have been known to react faster with thioether residues such as N-AcMet than with 5'-GMP, we found that [Pt(Me(4)en)(D(2)O)(2)](2+) appeared to react faster with 5'-GMP. To quantitatively assess the factors influencing the rates of reaction, rate constants at pH 4 were determined for the reactions of [Pt(en)(D(2)O)(2)](2+) [en = ethylenediamine] and [Pt(Me(4)en)(D(2)O)(2)](2+) with N-AcMet, N-AcHis, 5'-GMP, and Guo (guanosine). In each case the less bulky complex ([Pt(en)(D(2)O)(2)](2+)) reacts more quickly than does the bulkier [Pt(Me(4)en)(D(2)O)(2)](2+), as expected. Both complexes reacted faster with 5'-GMP; however, analysis of the rate constants suggests that the [Pt(en)(D(2)O)(2)](2+) complex favors reaction with 5'-GMP due to hydrogen bonding with the 5'-phosphate, whereas [Pt(Me(4)en)(D(2)O)(2)](2+) disfavors reaction with N-AcMet due to steric clashes. Bulk had relatively little effect on the rate constant with N-AcHis, suggesting that peptides or proteins that coordinate via His residues would not have their reactivity affected by bulky diamine ligands.  相似文献   

3.
The kinetics of the complex-formation reactions between monofunctional palladium(II) complexes [Pd(NNN)Cl]+, where NNN is 2,2:6,2″-terpyridine (terpy), diethylenetriamine (dien) or bis(2-pyridylmethyl)amine (bpma), with pyridine, 4-methylpyridine, 4-acetylpyridine, 4-cyanopyridine and 4-aminopyridine, have been studied in methanol at 25 °C using stopped-flow spectrophotometry. The highest reactivity was observed for the [Pd(terpy)Cl]+ complex, whereas 4-aminopyridine is the strongest nucleophile. The results, compared with those previously published on the [Pt(NNN)Cl]+ complexes, are discussed in terms of reactivity and discrimination ability of the reaction centre. The crystal structure of [Pd(terpy)(py)](ClO4)2 has been determined by X-ray diffraction. Crystals are triclinic, space group , and consist of distorted square planar [Pd(terpy)(py)]2+ cations and perchlorate anions. The Pd-N bond length to the central atom of terpy ligand is well below 2.0 Å and significantly shorter than any of the other M-N distances. The pyridine plane forms a dihedral angle of 61.9(2)° with the coordination N4 donors.  相似文献   

4.
Palladium(II) complexes of the peptides GlyMet, GlyMetGly and GlyGlyMet containing methionyl residues were studied by potentiometric and 1H NMR spectroscopic methods. The coordination of terminal amino and deprotonated amide nitrogen and thioether sulfur donor atoms was suggested in the mono complexes of GlyMet and GlyMetGly. The fourth coordination site of these complexes can be occupied by solvent molecule, chloride or hydroxide ions or by another ligand molecule in the bis or mixed ligand complexes. The second ligand coordinates monodentately via the thioether function in acidic media and the amino group under neutral or basic conditions. The stoichiometry of the major species formed in the palladium(II)-GlyGlyMet system is [PdH(-2) L]- and this is coordinated by the amino, two-amide and the thioether donor functions. Thioether bridged mixed metal complexes formed in the reaction of [Pd(dien)]2+ and [Cu(GlyMetH(-1))] or [Ni(GlyMetGlyH(-2))]- also have been detected by spectroscopic techniques.  相似文献   

5.
The reactions of the platinum(II) complexes, [Pt(dien)(H(2)O)](2+), [PtCl(dien)](+) and [PtBr(dien)](+) (dien is diethylenetriamine) with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), glutathione (GSH) and l-methionine (S-meth), have been studied by UV-Visible spectrophotometry and (1)H NMR spectroscopy. Kinetic and thermodynamic parameters of these reactions were determined. Competitive reactions of [PtCl(dien)](+) with l-methionine and 5'-GMP demonstrated initially rapid formation of [Pt(dien)(S-meth)](2+) followed by displacement of l-methionine by 5'-GMP. In the later stages the concentration of [Pt(dien)(N7-GMP)](2+) is predominant. The results are analyzed in reference to the anti-tumour activity of Pt(II) complexes.  相似文献   

6.
Despite their structural similarity, [Pt(dien)(1-MeC-N3)](2+) (1), [Pd(dien)(1-MeC-N3)](2+) (2), and [Pt(NH(3))(3)(1-MeC-N3)](2+) (3) (with dien=diethylenetriamine and 1-MeC=neutral 1-methylcytosine) behave in part markedly different at strongly alkaline pH (12-13) and at room temperature. While 1 and 2, yet not 3 show linkage isomerization from N3 to N4, deamination of the cytosine nucleobase to 1-methyluracilate occurs with 1 and 3, yet not with 2. Pathways leading to N3,N4-diplatinated 1-MeC(-) complexes (1-MeC(-)=1-methylcytosine, deprotonated at exocyclic amino group N4) have been studied at high pH by starting from 1 and 3, respectively, and adding (dien)Pt(II). It appears that initial migration of the metal entity from N3 to N4, followed by binding of the second metal to the available N3 site, is favored over sequential coordination to N3 and then N4. X-ray crystal data of 1-3 density functional theory (DFT) calculations, and NMR ((1)H, (195)Pt) data are presented.  相似文献   

7.
The interactions of five bis(bipyridyl) Ru(II) complexes of pteridinyl-phenanthroline ligands with calf thymus DNA have been studied. The pteridinyl extensions were selected to provide hydrogen-bonding patterns complementary to the purine and pyrimidine bases of DNA and RNA. The study includes three new complexes [Ru(bpy)(2)(L-pterin)](2+), [Ru(bpy)(2)(L-amino)](2+), and [Ru(bpy)(2)(L-diamino)](2+) (bpy is 2,2'-bipyridine and L-pterin, L-amino, and L-diamino are phenanthroline fused to pterin, 4-aminopteridine, and 2,4-diaminopteridine), two previously reported complexes [Ru(bpy)(2)(L-allox)](2+) and [Ru(bpy)(2)(L-Me(2)allox)](2+) (L-allox and L-Me(2)allox are phenanthroline fused to alloxazine and 1,3-dimethyalloxazine), the well-known DNA intercalator [Ru(bpy)(2)(dppz)](2+) (dppz is dipyridophenazine), and the negative control [Ru(bpy)(3)](2+). Reported are the syntheses of the three new Ru-pteridinyl complexes and the results of calf thymus DNA binding experiments as probed by absorption and fluorescence spectroscopy, viscometry, and thermal denaturation titrations. All Ru-pteridine complexes bind to DNA via an intercalative mode of comparable strength. Two of these four complexes-[Ru(bpy)(2)(L-pterin)](2+) and [Ru(bpy)(2)(L-allox)](2+)-exhibit biphasic DNA melting curves interpreted as reflecting exceptionally stable surface binding. Three new complexes-[Ru(bpy)(2)(L-diamino)](2+), [Ru(bpy)(2)(L-amino)](2) and [Ru(bpy)(2)(L-pterin)](2+)-behave as DNA molecular "light switches."  相似文献   

8.
A new series of complexes of the type [Cu(dien)(2a-2tzn)Y(2)] and [Cu(dienXX)(2a-2tzn)Y(2)], where dien=diethylenetriamine and dienXX=Schiff dibase of diethylenetriamine formed with 2-furaldehyde (dienOO), 2-thiophenecarboxaldehyde (dienSS), or pyrrol-2-carboxaldehyde (dienNN); Y=Cl, Br or NO(3); and 2a-2tzn=2-amino-2-thiazoline, were synthesized and their structure established by C, H, N and Cu analysis; IR and electronic spectra; magnetic susceptibility; and molar conductivity. The isolated complexes are monomers, paramagnetic, and electrolytes of types 1:1 or 1:2. In both types of solid state complexes, [Cu(dien)(2a-2tzn)Y(2)] and [Cu(dienXX)(2a-2tzn)Y(2)], dien and its Schiff dibases are bonded to Cu(II) in a tridentate fashion through 3N atoms. The coordination sphere is completed by the endocyclic nitrogen of the thiazoline moiety and by two Cl, Br, or NO(3) groups with distorted octahedral geometry. The proposed structure of these compounds was supported by X-ray analysis of [Cu(dien)(Br)(2a-2tzn)](Br)(H(2)O). The coordination polyhedron around the copper atom can be described as a distorted square pyramid [Cu(dien)(Br)(2a-2tzn)](+). Its basal plane is occupied by the four nitrogen atoms of the dien and thiazoline ligands with Cu-N distances ranging between 1.996(6) and 2.032(3)A, and the axial position is occupied by one of the two bromine atoms (Br1) with a Cu1-Br1 bond distance of 2.782(1)A. The second bromine atom (Br2) is 4.694(2)A from the copper atom, which exists as a discrete anion and is responsible for the cationic nature of the complex. Results regarding toxicity, antitumor, and anti-inflammatory activities of the investigated compounds are promising and allow the selection of a lead compound for further biological studies.  相似文献   

9.
A theoretical study of structures of the 1,7,1 l,17-tetraoxa-2,6,12,16-tetraaza-cycloeicosane ligand ([20]AneN(4)O(4)) coordinated to Fe(2+), Co(2+), Ni(2+), Ru(2+), Rh(2+), and Pd(2+) transition metals ions was carried out with the DFT/B3LYP method. Complexes were fully optimized in C(s) symmetry with the metal ions coordinated either to nitrogen (1a) or oxygen atoms (1b). For all the cases performed in this work, 1a was always more stable than 1b. Considering each row it is possible to see that the binding energy increases with the atomic number. The M(2+) cation binding energies increase in the following order: Fe(2+)相似文献   

10.
The substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)], [Pt(bpma)(H(2)O)](2+) and [Pt(gly-met-S,N,N)(H(2)O)](+) [where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycylmethionine] with L-methionine, glutathione and guanosine 5'-monophosphate (5'-GMP) were studied in aqueous solutions in 0.10 M NaClO(4) under pseudo-first-order conditions as a function of concentration and temperature using UV-vis spectrophotometry. The reactions of the chloro complexes were followed in the presence of 10 mM NaCl and at pH approximately 5, whereas the reactions of the aqua complexes were studied at pH 2.5. The [PtCl(bpma)]+ complex is more reactive towards the chosen nucleophiles than [PtCl(gly-met-S,N,N)]. Also, the aqua complexes are more reactive than the corresponding chloro complexes. The activation parameters for all the reactions studied suggest an associative substitution mechanism. The reactions of [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)] with 5'-GMP were studied by using (1)H NMR spectroscopy at 298 K. The pK (a) value of the [Pt(gly-met-S,N,N)(H(2)O)]+ complex is 5.95. Density functional theory calculations (B3LYP/LANL2DZp) show that in all cases guanine coordination to the L(3)Pt fragment (L(3) is terpyridine, bpma, diethylenetriamine, gly-met-S,N,N) is much more favorable than the thioether-coordinated form. The calculations collectively support the experimentally observed substitution of thioethers from Pt(II) complexes by N7-GMP. This study throws more light on the mechanistic behavior of platinum antitumor complexes.  相似文献   

11.
Irradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.16 mol Einstein(-1)) lower than that for trans-[RuCl([15]aneN(4))(NO)](2+), [15]aneN(4) is 1,4,8,12-tetaazacyclopentadecane, (0.61 mol Einstein(-1)). After irradiation with 355 nm light, the trans-[RuCl([15]aneN(4))(NO)](2+) induces relaxation of the aortic ring, whereas the trans-[RuCl(cyclam)(NO)](2+) complex does not. The relaxation observed with trans-[RuCl([15]aneN(4))(NO)](2+) is consistent with a larger quantum yield of release of NO from this complex.  相似文献   

12.
Bismuth complexes are widely used as anti-ulcer drugs and can significantly reduce the side effects of platinum anti-cancer drugs. Bismuth is known to induce the synthesis of metallothionein (MT) in the kidney, but there are few chemical studies on the interactions of bismuth complexes with metallothionein. Here we show that Bi(3+) binds strongly to metallothionein with a stoichiometry bismuth:MT = 7:1 (Bi(7)MT) and can readily displace Zn(2+) and Cd(2+). Bismuth is still bound to the protein even in strongly acidic solutions (pH 1). Reactions of bismuth citrate with MT are faster than those of [Bi(EDTA)](-), and both exhibit biphasic kinetics. (1)H NMR data show that Zn(2+) is displaced faster than Cd(2+), and that both Zn(2+) and Cd(2+) in the beta-domain (three metal cluster) of MT are displaced by Bi(3+) much faster than from the alpha-domain (four metal cluster). The extended x-ray absorption fine structure spectrum of Bi(7)MT is very similar to that for the glutathione and N-acetyl-L-cysteine complexes [Bi(GS)(3)] and [Bi(NAC)(3)] with an inner coordination sphere of three sulfur atoms and average Bi-S distances of 2.55 A. Some sites appear to contain additional short Bi-O bonds of 2.2 A and longer Bi-S bonds of 3.1 A. The Bi(3+) sites in Bi(7)MT are therefore highly distorted in comparison with those of Zn(2+) and Cd(2+).  相似文献   

13.
The kinetics and the equilibrium of (dien)PdCl+ interaction with cytidine (C) and cytidine 5'-monophosphate (CMP) were studied by spectrophotometry and by stopped-flow methods. In both cases, the mechanism implies a (dien)Pd(H2O)2+ intermediate with a significant contribution of the solvent path at low chloride concentrations. With CMP, the rate is affected due to the addition of a mechanistic path via an intermediate formed between (dien)Pd(II) and the phosphate group of CMP. The kinetic and thermodynamic parameters have been determined and reflect the favorable electrostatic interactions due to the presence of the phosphate group of CMP. Furthermore, these parameters are in agreement with a transient (dien)Pd(II)-phosphate complex of CMP leading to the formation of the thermodynamically favored (dien)Pd(II)-N3 complex as final product.  相似文献   

14.
The reaction of trans-[Ru(NH(3))(4)P(OEt)(3)NO](3+) and mitochondria was investigated through differential pulse polarography and fluorimetry. The nitrosyl complex undergoes one-electron reduction centered on the NO ligand site. The reaction between the mitochondrial reductor and trans-[Ru(NH(3))(4)P(OEt)(3)NO](3+) exhibits a second order specific rate constant calculated as k=2 x 10(1) M(-1) s(-1). The reduced species, trans-[Ru(NH(3))(4)P(OEt)(3)NO](2+), quickly releases NO, yielding trans-[Ru(NH(3))(4)P(OEt)(3)H(2)O](2+). The low toxicities of both trans-[Ru(NH(3))(4)P(OEt)(3)(NO)](2+) and trans-[Ru(NH(3))(4)P(OEt)(3)H(2)O](2+) and its ability to release NO after reductive activation in a biological medium make the nitrosyl compound a useful model of a hypotensive drug.  相似文献   

15.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental sulfur generates higher nuclearity Fe/S clusters.  相似文献   

16.
His-Val-His and His-Val-Gly-Asp are two naturally occurring peptide sequences, present at the active site of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). The interactions of His-Val-His=A (copper binding site) with Cu(II) and of His-Val-Gly-Asp=B (zinc binding site) with Zn(II) have been studied by using both potentiometric and spectroscopic methods (visible, EPR, NMR). The stoichiometry, stability constants and solution structure of the complexes formed have been determined. The binding modes of the species [CuAH](2+) and [CuA](+) were characterized by histamine type of coordination. [CuA](+) is further stabilized by the formation of a macrochelate with the involvement of the imidazole of the C-terminal histidine. The existence of macrochelate results in a slight distortion of the coordination geometry providing good base for the development of enzyme models. The enhanced stability of the macrochelate suppresses the formation of bis-complexes as well as the amide deprotonation. This process, however, takes place at higher pH resulting in the formation of the 4 N(-) coordinated [NH(2),N(-),N(-),N(im)] species [CuAH(2-)](-). On the other hand, in the case of the Zn(II)-His-Val-Gly-Asp system, coordination takes place at the terminal carboxylate in species [ZnBH(2)](2+). Monodentate binding occurs via the N-terminal imidazole in [ZnBH](+) while histamine type of coordination is possible in [ZnB], [ZnB(2)H](-) and [ZnB(2)](2-) species. Amide deprotonation does not take place in the case of Zn(2+), hydroxo-complexes are formed instead.  相似文献   

17.
Group II introns are large ribozymes, consisting of six functionally distinct domains that assemble in the presence of Mg(2+) to the active structure catalyzing a variety of reactions. The first step of intron splicing is well characterized by a Michaelis-Menten-type cleavage reaction using a two-piece group II intron: the substrate RNA, the 5'-exon covalently linked to domains 1, 2, and 3, is cleaved upon addition of domain 5 acting as a catalyst. Here we investigate the effect of Ca(2+), Mn(2+), Ni(2+), Zn(2+), Cd(2+), Pb(2+), and [Co(NH(3))(6)](3+) on the first step of splicing of the Saccharomyces cerevisiae mitochondrial group II intron Sc.ai5gamma. We find that this group II intron is very sensitive to the presence of divalent metal ions other than Mg(2+). For example, the presence of only 5% Ca(2+) relative to Mg(2+) results in a decrease in the maximal turnover rate k (cat) by 50%. Ca(2+) thereby has a twofold effect: this metal ion interferes initially with folding, but then also competes directly with Mg(2+) in the folded state, the latter being indicative of at least one specific Ca(2+) binding pocket interfering directly with catalysis. Similar results are obtained with Mn(2+), Cd(2+), and [Co(NH(3))(6)](3+). Ni(2+) is a much more powerful inhibitor and the presence of either Zn(2+) or Pb(2+) leads to rapid degradation of the RNA. These results show a surprising sensitivity of such a large multidomain RNA on trace amounts of cations other than Mg(2+) and raises the question of biological relevance at least in the case of Ca(2+).  相似文献   

18.
He MM  Clugston SL  Honek JF  Matthews BW 《Biochemistry》2000,39(30):8719-8727
The metalloenzyme glyoxalase I (GlxI) converts the nonenzymatically produced hemimercaptal of cytotoxic methylglyoxal and glutathione to nontoxic S-D-lactoylglutathione. Human GlxI, for which the structure is known, is active in the presence of Zn(2+). Unexpectedly, the Escherichia coli enzyme is inactive in the presence of Zn(2+) and is maximally active with Ni(2+). To understand this difference in metal activation and also to obtain a representative of the bacterial enzymes, the structure of E. coli Ni(2+)-GlxI has been determined. Structures have also been determined for the apo enzyme as well as complexes with Co(2+), Cd(2+), and Zn(2+). It is found that each of the protein-metal complexes that is catalytically active has octahedral geometry. This includes the complexes of the E. coli enzyme with Ni(2+), Co(2+), and Cd(2+), as well as the structures reported for the human Zn(2+) enzyme. Conversely, the complex of the E. coli enzyme with Zn(2+) has trigonal bipyramidal coordination and is inactive. This mode of coordination includes four protein ligands plus a single water molecule. In contrast, the coordination in the active forms of the enzyme includes two water molecules bound to the metal ion, suggesting that this may be a key feature of the catalytic mechanism. A comparison of the human and E. coli enzymes suggests that there are differences between the active sites that might be exploited for therapeutic use.  相似文献   

19.
Tumor-targeting peptides radiolabeled with positron-emitting (68)Ga are promising candidates as new noninvasive diagnostic agents for positron emission tomography (PET). The targeting peptides are tethered to a chelator that forms a stable coordination complex with Ga(3+) that is inert to dissociation of Ga(3+)in vivo. Metal complexes of macrobicyclic hexaamine "sarcophagine" (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) ligands exhibit remarkable stability as a result of the encapsulating nature of the cage amine ligand. A Ga(3+) sarcophagine complex, [Ga-(1-NH(3)-8-NH(2)-sar)](4+), has been characterized using X-ray crystallography, demonstrating that Ga(3+) is coordinated to six nitrogen atoms in a distorted octahedral complex. A bifunctional derivative of (NH(2))(2)sar, possessing two aliphatic linkers with carboxylic acid functional groups has been attached to two cyclic-RGD peptides that target the α(v)β(3) integrin receptor that is overexpressed in some types of tumor tissue. This dimeric species can be radiolabeled with (68)Ga(3+) in >98% radiochemical yield and (68)Ga(3+) does not dissociate from the ligand in the presence of transferrin, an endogenous protein with high affinity for Ga(3+). Biodistribution and micro-PET imaging studies in tumor-bearing mice indicate that the tracer accumulates specifically in tumors with high integrin expression. The high tumor uptake is coupled with low nonspecific uptake and clearance predominantly through the kidneys resulting in high-quality PET images in animal models.  相似文献   

20.
The capabilities and limitations of the Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional are investigated as applied to studies of mixed-valent multinuclear oxomanganese complexes. Benchmark calculations involve the analysis of structural, electronic and magnetic properties of di-, tri- and tetra-nuclear Mn complexes, previously characterized both chemically and spectroscopically, including the di-mu-oxo bridged dimers [Mn(III)Mn(IV)(mu-O)(2)(H(2)O)(2)(terpy)(2)](3+) (terpy=2,2':6,2'-terpyridine) and [Mn(III)Mn(IV)(mu-O)(2)(phen)(4)](3+) (phen=1,10-phenanthroline), the Mn trimer [Mn(3)O(4)(bpy)(4)(H(2)O)(2)](4+) (bpy=2,2'-bipyridine), and the tetramer [Mn(4)O(4)L(6)](+) with L=Ph(2)PO(2)(-). Furthermore, the density functional theory (DFT) B3LYP level is applied to analyze the hydrated Mn(3)O(4)CaMn cluster completely ligated by water, OH(-), Cl(-), carboxylate and imidazole ligands, analogous to the '3+1 Mn tetramer' of the oxygen-evolving complex of photosystem II. It is found that DFT/B3LYP predicts structural and electronic properties of oxomanganese complexes in pre-selected spin-electronic states in very good agreement with X-ray and magnetic experimental data, even when applied in conjunction with rather modest basis sets. However, it is conjectured that the energetics of low-lying spin-states is beyond the capabilities of the DFT/B3LYP level, constituting a limitation to mechanistic studies of multinuclear oxomanganese complexes where until now the performance of DFT/B3LYP has raised little concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号