首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.  相似文献   

2.
The principles of enzyme kinetic analysis were applied to quantitate the relationships among serum-derived growth factors, nutrients, and the rate of survival and multiplication of human fibroblasts in culture. The survival or multiplication rate of a population of cells plotted against an increasing concentration of a growth factor or nutrient in the medium exhibited a hyperbolic pattern that is characteristic of a dissociable, saturable interaction between cells and the ligands. Parameters equivalent to the Km and Vmax of enzyme kinetics were assigned to nutrients and growth factors. When all nutrient concentrations were optimized and in steady state, serum factors accelerated the rate of multiplication of a normal cell population. The same set of nutrients that supported a maximal rate of multiplication in the presence of serum factors supported the maintenance of non-proliferating cells in the absence of serum factors. Therefore, under this condition, serum factors are required for cell division and play a purely regulatory iole in multiplication of the cell population. The quantitative requirement for 18 nutrients of 29 that were examined was significantly higher (P < 0.001) for cell multiplication in the presence of serum factors than for cell maintenance in the absence of serum factors. This indicated specific nutrients that may be quantitatively important in cell division processes as well as in cell maintenance. The quantitative requirement for Ca2+, Mg2+, K+, Pi, and 2-oxocarboxylic acid for cell multiplication was modified by serum factors and other purified growth factors. The requirement for over 30 other nutrients could not clearly be related to the level of serum factors in the medium. Serum factors also determined the Ca2+, K+, and 2-oxocarboxylic acid requirement for maintenance of non-proliferating cells. Therefore, when either Ca2+, K+, or 2-oxocarboxylic acid concentration was limiting, factors in serum played a role as cell “survival or maintenance” factors in addition to their role in cell division as “growth regulatory” factors. However, with equivalent levels of serum factors in the medium, the requirement for Ca2+, K+, and 2-oxocarboxylic acids was still much higher for multiplication than for maintenance. Kinetic analysis revealed that the concentrations of individual nutrients modify the quantitative requirement for others for cell multiplication in a specific pattern. Thus, specific quantitative relationships among different nutrients in the medium are important in the control of the multiplication rate of the cell population. When all nutrient concentrations were optimal for multiplication of normal cells, the multiplication response of SV40-virus-transformed cells to serum factors was similar to that of normal cells. When serum factors were held constant, transformed cells required significantly less (P < 0.001) of 12 of the 26 nutrients examined. Therefore, the transformed cells only have a growth advantage when the external concentration of specific nutrients limits the multiplication rate of normal cells. Taken together, the results suggest that the control of cell multiplication is intimately related to external concentrations of nutrients. Specific growth regulatory factors may stimulate cell proliferation by modification of the response of normal cells to nutrients. Transforming agents may confer a selective growth advantage on cells by a constitutive alteration of their response to extracellular nutrients.  相似文献   

3.
Learned flavor preferences can be established after intragastric nutrient administration by two different behavioral procedures, concurrent and sequential. In a concurrent procedure, two flavored stimuli are offered separately but at the same time on a daily basis: one stimulus is paired with the simultaneous intragastric administration of partially digested food and the other with physiological saline. In sequential learning, the two stimuli are presented during alternate sessions. Neural mechanisms underlying these learning modalities have yet to be fully elucidated. The aim of this study was to examine the role of vagal afferent fibers in the visceral processing of rewarding nutrients during concurrent (experiment 1) and sequential (experiment 2) flavor preference learning in Wistar rats. For this purpose, capsaicin, a neurotoxin that destroys slightly myelinated or unmyelinated sensory axons, was applied to the subdiaphragmatic region of the esophagus to selectively damage most of the vagal afferent pathways that originate in the gastrointestinal system. Results showed that capsaicin [1 mg of capsaicin dissolved in 1 ml of vehicle (10% Tween 80 in oil)] blocked acquisition of concurrent but not sequential flavor preference learning. These results are interpreted in terms of a dual neurobiological system involved in processing the rewarding effects of intragastrically administered nutrients. The vagus nerve, specifically capsaicin-sensitive vagal afferent fibers, would only be essential in concurrent flavor preference learning, which requires rapid processing of visceral information.  相似文献   

4.
Obesity is rapidly increasing and is of great public health concern worldwide. Although there have been remarkable developments in obesity research over the past 10 years, the molecular mechanism of obesity is still not completely understood. Body weight results from the balance between food intake and energy expenditure. Recent studies have found that hypothalamic AMP-activated protein kinase plays a key role in regulating these processes. Leptin, insulin, glucose and alpha-lipoic acid have been shown to reduce food intake by lowering hypothalamic AMP-activated protein kinase activity, whereas ghrelin and glucose depletion increase food intake by increasing hypothalamic AMP-activated protein kinase activity. In addition, this enzyme plays a role in the central regulation of energy expenditure. These findings indicate that hypothalamic AMP-activated protein kinase is an important signal molecule, which integrates nutritional and hormonal signals and modulates feeding behavior and energy expenditure.  相似文献   

5.
PP administration induces negative energy balance by suppressing food intake and gastric emptying while increasing energy expenditure in rodents. The mechanism of PP actions involves the changes in the expression of hypothalamic feeding-regulatory peptides and the activity of the vago-vagal and vago-sympathetic reflex arc. PP-overexpressing mice we developed exhibited the thin phenotype with decreased food intake and gastric emptying rate. Plasma cholecystokinin (CCK) concentrations were increased in the transgenic mice and CCK-1 receptor antagonist improved the anorexia of the animals. These results, together with the previous notion of PP as an anti-CCK hormone in pancreatic exocrine secretion and gallbladder contraction, indicate that PP-CCK interactions may be either antagonistic or synergistic and the transgenic mice may exhibit the mixed phenotype by overproduction of PP and CCK.  相似文献   

6.
Ovariectomy on day 19 of pregnancy augmented galactosyl transferase activity 24 h after surgery preceding by 6 h the significant alpha-lactalbumin accumulation. Progesterone, injected immediately after ovariectomy showed a clear inhibitory effect on both galactosyl transferase and alpha-lactalbumin concentration, measured 30 h after ovariectomy. However, once the synthesis of lactose has been induced, progesterone is no longer inhibitory. Oestrogen induced a significant increase in lactose synthetase activity but no effect was obtained on galactosyl transferase activity. Progesterone, in a time and dose dependent relationship, was capable of preventing the effect of estrogen on lactogenesis. The lactogenic action of oestrogen in ovariectomized pregnant rats might be due to a direct effect at the mammary gland level facilitating the action of prolactin or through an indirect effect mediated via an increase on prolactin release.  相似文献   

7.
8.
Autophagy (from Greek “auto” — self, “phagos” — to eat) is the major catabolic process involved in the delivery and lysosomal degradation of long-lived intracellular components: proteins, lipids, nucleic acids, and organelles. Since the discovery of genes involved in regulation of autophagy in the 1990s, there has been a significant increase in studies of autophagy as a process involved in maintaining cellular homeostasis, as well as its role in the development of different pathologies. This review focuses on the basics of autophagy and its regulatory mechanisms. The role of autophagy in the maintenance of cellular homeostasis and tumorigenesis is also discussed.  相似文献   

9.
10.
Food turns out to be not only the nutrient supplier for our body but also a carrier of regulatory information. Interestingly, a recent study made the discovery that some plant/food-derived microRNAs (miRNAs) accumulate in the serum of humans or plant-feeding animals, and regulate mammalian gene expression in a sequence-specific manner. The authors provided striking evidence that miRNAs could function as active signaling molecules to transport information across distinct species or even kingdoms. Although the mechanism of how miRNAs are shuttled between different organisms is still not well characterized, initial results point to the involvement of microvesicles and specific RNA-transporter-like proteins. These findings raise both speculation about the potential impact that plants may have on animal physiology at the molecular level, and an appealing possibility that food-derived miRNAs may offer us another means to deliver necessary nutrients or therapeutics to our bodies.  相似文献   

11.
12.
Chromium metabolism and its role in disease processes in man   总被引:2,自引:0,他引:2  
Chromium is an essential element required for normal carbohydrate and lipid metabolism. Insufficient dietary Cr has been linked to maturity-onset diabetes and cardiovascular diseases. The dietary Cr intake of most individuals is considerably less than the suggested safe and adequate intake. Consumption of refined foods, including simple sugars, exacerbates the problem of insufficient dietary Cr since these foods are not only low in dietary Cr but also enhance additional Cr losses. Chromium losses are also increased due to pregnancy, strenuous exercise, infection, physical trauma and other forms of stress. Supplementation of Cr to normal free-living individuals often leads to significant improvements in glucose tolerance, serum lipids including high-density lipoprotein cholesterol, insulin and insulin binding. Chromium also tends to normalize blood sugar. Chromium supplementation of subjects with elevated blood sugar following a glucose load leads to a decrease in blood sugar while hypoglycemics respond to supplemental Cr by an increase in hypoglycemic glucose values, increased insulin binding and alleviation of hypoglycemic symptoms. In summary, dietary intake of Cr is suboptimal and this is exacerbated by increased Cr losses due to stress and certain refined foods including simple sugars that enhance Cr losses. Supplemental Cr is associated with improvements of risk factors associated with maturity-onset diabetes and cardiovascular diseases.  相似文献   

13.
14.
15.
This work generalizes the results of studies of calcium metabolism in the participants of long-term space flights of 30 to 438 days on the Salyut and Mir orbital stations during 1978–1998. The results of pre- and postflight examination of 44 cosmonauts (18 subjects participated twice in long-term space flights) were analyzed. After space flights of medium (of 3 to 6 months) and long (of 6 to 14 months) duration, the total blood calcium content was increased, mainly due to its ionized fraction; the blood level of parathyroid hormone was significantly increased and the level of calcitonin was decreased. The content of osteocalcin was increased after space flights. Calcium kinetics was studied using stable isotopes in three cosmonauts before, during, and after the 115-day flight. During the flight, intestinal absorption of calcium and its gastrointestinal excretion were decreased, whereas its renal excretion was increased. Early postflight intestinal absorption was, on average, lower than during the flight, whereas intestinal excretion increased. Both renal and intestinal excretion of calcium were not normalized 3.5 to 4.5 months after the glight. The mathematical models used for evaluating the rates of main calcium flows revealed increased bone tissue resorption that resulted in the negative bone balance during the flight. The conclusion about the decreased rate of bone tissue remodeling and its increased resorption was confirmed by biochemical data, including endocrine markers.  相似文献   

16.
Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia.  相似文献   

17.
Gunno Renman 《Hydrobiologia》1993,251(1-3):65-72
In winter, the littoral substrate of ecotonal zones along north Swedish rivers and lakes freezes. Even if the littoral is flooded at freeze-up, the ice freezes solid to the shore substrate due to low temperature combined with a gradual decrease in water level during winter. Frost conditions were studied during an 8-year period along eight littoral transects in the River Vindelälven and adjacent riverside lagoons. Heavy frost heave with formation of needle ice was observed in several places.Nutrient release was suggested to take place due to the frost process. Sediment was taken to a laboratory experiment where samples with sediment and water were kept under unfrozen and frozen conditions during six months. N (total-N) and Ca were significantly released to the water, while P (total-P) did not show any clear movement from the frozen sediment.The results indicate that frost processes in ecotonal zones are involved in the movement of nutrients between sediment and water.  相似文献   

18.
The administration of antipsychotic drugs to human patients or experimental animals leads to significant weight gain, which is widely presumed to be driven by hyperphagia; however, the contribution from energy expenditure remains unclear. These studies aim to examine the contribution of shifts in energy expenditure, particularly those involving centrally mediated changes in thermogenesis, to the body weight gain associated with the administration of olanzapine to female Sprague Dawley rats. Olanzapine (6 mg/kg/day orally) caused a transient increase in food intake but a maintained increase in body weight. When pair‐fed rats were treated with olanzapine, body weight continued to rise compared to vehicle‐treated rats, consistent with a reduction in energy expenditure. Brown adipose tissue (BAT) temperature, measured using biotelemetry devices, decreased immediately after the onset of olanzapine treatment and remained depressed, as did physical activity. UCP1 expression in interscapular BAT was reduced following chronic olanzapine treatment. An acute injection of olanzapine was preceded by an injection of a retrograde tracer into the spinal cord to evaluate the nature of the olanzapine‐activated neural pathway. Levels of Fos protein in a number of spinally projecting neurons within discrete hypothalamic and brainstem sites were elevated in olanzapine‐treated rats. Some of these neurons in the perifornical region of the lateral hypothalamus (LHA) were also Orexin A positive. These data collectively show a significant impact of thermogenesis (and physical activity) on the weight gain associated with olanzapine treatment. The anatomical studies provide an insight into the central neuroanatomical substrate that may subserve the altered thermogenic responses brought about by olanzapine.  相似文献   

19.
Lactoferrin (LF) has been recently proposed as a physiologic regulator of the granulocyte monocyte progenitor (CFU-GM). This glycoprotein, when saturated with iron, has been said to limit CFU-GM growth by decreasing production and release of colony stimulating activity (CSA) by monocytes and macrophages. Human milk LF saturated with iron, at concentrations ranging from 10(-18) to 10(-8) M was added either to endogenously stimulated bone marrow cells or to mononucleated cells used as feeder layers for adherent cell-depleted marrow. Irrespective of the concentration of LF within the culture system used, no significant inhibition of CFU-GM growth was observed. Moreover, the CFU-GM stimulating activity of medium conditioned by a 4-day incubation of 1 X 10(6) mononucleated blood cells in the presence or in the absence of LF was the same. Various possible explanations for not confirming the reported inhibiting activity of iron saturated LF were explored: 1) masking inhibition of the system by prostaglandin E2 (PGE2), 2) masking inhibition of the system by bovine LF still detectable in the fetal calf serum after heating, 3) preinhibition of the system by leukemic-associated inhibitory activity (LIA) possibly present in the culture system, 4) the iron and calcium content of the culture medium used, 5) the fixation of LF to plastic compounds, 6) the source of the human LF used, 7) the marrow cell separation methods used. None of these factors was shown to play a role in vitro in the activity of LF and thus no evidence was found for a significant role of LF in the regulation of CSA production by monocytes. Peripheral blood human monocytes isolated by elutriation and incubated in albumin free medium in the presence of either 125I-LF or colloidal gold-labeled LF showed no LF binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号