首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of insulin on vascular endothelial growth factor (VEGF) expression in cultured vascular cells and in angiogenesis were characterized. Insulin increased VEGF mRNA levels in mouse aortic smooth muscle cells from 10(-9) to 10(-7) m with an initial peak of 3.7-fold increases at 1 h and a second peak of 2.8-fold after 12 h. The first peak of VEGF expression was inhibited by LY294002, an inhibitor of phosphatidylinositol (PI) 3-kinase, and by the overexpression of dominant negative forms of p85 subunit of PI 3-kinase or Akt. Inhibitors of MEK kinase, PD98059, or overexpression of dominant negative forms of Ras was ineffective. In contrast, the chronic effect of insulin on VEGF expression was partially inhibited by both LY294002 or PD98059 as well as by the overexpression of dominant negatives of PI 3-kinase or Ras. The importance of PI 3-kinase-Akt pathway on VEGF expression was confirmed in mouse aortic smooth muscle cells isolated from insulin receptor substrate -1 knockout (IRS-1-/-) mice that showed parallel reductions of 46-49% in insulin-stimulated VEGF expression and PI 3-kinase-Akt activation. Insulin-induced activation of PI 3-kinase-Akt on hypoxia-induced VEGF expression and neovascularization was reduced by 40% in the retina of neonatal hypoxia model using IRS-1-/- mice. Thus, unlike other cells, insulin can regulate VEGF expression by both IRS-1/PI 3-kinase-Akt cascade and Ras-MAPK pathways in aortic smooth muscle cells. The in vivo results provide direct evidence that insulin can modulate hypoxia-induced angiogenesis via reduction in VEGF expression in vivo.  相似文献   

2.
3.
We investigated the role of Ras in vascular endothelial growth factor (VEGF)-mediated signal transduction and the promotion of angiogenic changes primary endothelial cells. We find that VEGF potently induces Ras activation and that this step is essential for the stimulation by VEGF of several cellular changes associated with angiogenesis, including proliferation, migration, and branching morphogenesis in three-dimensional culture. Inhibition of Ras signaling induced subtle changes in the actin architecture but had no effect on the phosphatidylinositol 3-kinase (PI3K) or p38 signaling pathways. In contrast, activation of ERK was largely dependent on Ras. Although inhibiting ERK activity completely suppressed cell proliferation and partially blocked in vitro differentiation, neither ERK nor PI3K activity was required for VEGF-induced migration. These data provide the first direct demonstration that inhibition of Ras signal transduction is anti-angiogenic. Interestingly, VEGF signal transduction bifurcates both upstream and downstream of Ras, with different Ras-dependent signals controlling endothelial cell proliferation and migration, essential components of the angiogenic response.  相似文献   

4.
Angiopoietin‐2 (Ang2) is a Tie‐2 ligand that destabilizes vascular structures, allowing for neovascularization or vessel regression depending on local vascular endothelial cell growth factor (VEGF) concentrations. Although various stimuli have been shown to affect Ang2 expression, information on the underlying mechanisms involved in Ang2 production in endothelial cells (EC) is just beginning to emerge. In the present study, we have used adenovirus‐mediated gene transfer and pharmacological inhibitors to examine the role of the PTEN/PI3‐K/Akt pathway on Ang2 release. Inhibition of PI3‐kinase with wortmannin led to a stimulation of basal Ang2 release in EC, while overexpression of an active form of Akt reduced Ang2. In addition, adenovirus‐mediated gene transfer of the phosphatase PTEN stimulated Ang2 release. Incubation of the cells with Ang1, an agent that activates the PI3‐K/Akt pathway in EC, reduced Ang2 release. This effect of Ang1 could be prevented by wortmannin and LY‐294002 pretreatment. Similarly, in VEGF‐treated EC the increase in Ang2 production observed was greater in the presence of a PI3‐K inhibitor. Our observations that PTEN acts as a positive modulator of Ang2 release, while activation of the PI3‐K/Akt pathway downregulates Ang2, reveal an additional mechanism through which the PTEN/PI3‐K/Akt pathway could affect the angiogenic process. J. Cell. Physiol. 209: 239, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

5.
Endothelial cells play a vital role in the maintenance of cardiovascular homeostasis. Epoxyeicosatrienoic acids (EETs), cytochrome P-450 (CYP) epoxygenase metabolites of arachidonic acid in endothelial cells, possess potent and diverse biological effects within the vasculature. We evaluated the effects of overexpression of CYP epoxygenases on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in bovine aortic endothelial cells. CYP epoxygenase overexpression significantly increased endothelial cell viability and inhibited TNF-alpha induction of endothelial cell apoptosis as evaluated by morphological analysis of nuclear condensation, DNA laddering, and fluorescent-activated cell sorting (FACS) analysis. CYP epoxygenase overexpression also significantly inhibited caspase-3 activity and downregulation of Bcl-2 expression induced by TNF-alpha. The antiapoptotic effects of CYP epoxygenase overexpression were significantly attenuated by inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK signaling pathways; however, inhibition of endothelial nitric oxide synthase activity had no effect. Furthermore, CYP epoxygenase overexpression significantly attenuated the extent of TNF-alpha-induced ERK1/2 dephosphorylation in a time-dependent manner and significantly increased PI3K expression and Akt phosphorylation in both the presence and absence of TNF-alpha. Collectively, these results suggest that CYP epoxygenase overexpression, which is known to increase EET biosynthesis, significantly protects endothelial cells from apoptosis induced by TNF-alpha. This effect is mediated, at least in part, through inhibition of ERK dephosphorylation and activation of PI3K/Akt signaling.  相似文献   

6.
Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for the first time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p<0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.  相似文献   

7.
CD40 has been involved in tumor and inflammatory neoangiogenesis. In this study we determined that stimulation of endothelial CD40 with sCD154 induced resistance to apoptosis and in vitro vessel-like formation by human microvascular endothelial cells (HMEC). These effects were determined to be mediated by CD40-dependent signaling because they were inhibited by a soluble CD40-muIg fusion protein. Moreover, apoptosis of HMEC was associated with an impairment of Akt phosphorylation, which was restored by stimulation with sCD154. The anti-apoptotic effect as well as in vitro vessel-like formation and Akt phosphorylation were inhibited by treatment of HMEC with two unrelated pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002. CD40 stimulation induced a rapid increase in Akt enzymatic activity that was not prevented by cycloheximide, an inhibitor of protein synthesis. The enhanced Akt activity induced by stimulation of endothelial CD40 was temporarily correlated with the association of CD40 with TRAF6, c-Cbl, and the p85 subunit of PI3K. Expression of negative-dominant Akt inhibited the activation of endogenous Akt through CD40 stimulation, despite the observation that association of CD40 with TRAF6, c-Cbl, and PI3K was intact. The defective activation of Akt abrogated not only the anti-apoptotic effect of CD40 stimulation but also the proliferative response, the enhanced motility, and the in vitro formation of vessel-like tubular structures by CD40-stimulated HMEC. In conclusion, these results suggest that endothelial CD40, through activation of the PI3K/Akt signaling pathway, regulates cell survival, proliferation, migration, and vessel-like structure formation, all steps considered critical for angiogenesis.  相似文献   

8.
It has been observed that a graft organ continues to survive and function normally even in the presence of anti-graft antibodies. However, the mechanisms behind acquirement of this condition remain unknown. Here we report that the anti-HLA ligation on endothelial cells induces PI3K/AKT activation followed by antioxidant gene induction through Nrf2-mediated antioxidant-responsive element (ARE) activation. Activation of PI3K/AKT in endothelial cells by a low concentration of anti-HLA ligation enhances protection from complement attack. A real-time quantitative PCR and flow-cytometry experiment showed that ferritin H and HO-1 mRNAs were induced in a PI3K/AKT-dependent manner, while CD55 and CD59 expression were not enhanced by anti-HLA ligation. Anti-HLA ligation on endothelial cells activates ferritin H ARE and induces Nrf2 binding on its enhancer element. Finally, overexpression of Nrf2 in endothelial cells attenuates complement-mediated cytotoxicity. These experiments suggest that induction of PI3K/AKT-dependent cytoprotective genes by Nrf2 is an important mechanism to prevent complement attack. Thus, a protocol to activate this pathway would be a potential strategy for avoidance of graft rejection in transplantation.  相似文献   

9.
Therapeutic radiation is widely used in cancer treatments. The success of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor vasculature. Vascular endothelial growth factor (VEGF) plays a critical role in protecting endothelial cells against a number of antitumor agents including ionizing radiation. Strategies designed to overcome the survival advantage afforded to endothelial cells by VEGF might aid in enhancing the efficacy of radiation therapy. In this report we examined the signaling cascade(s) involved in VEGF-mediated protection of endothelial cells against gamma-irradiation. gamma-Irradiation-induced apoptosis of human dermal microvascular endothelial cells (HDMECs) was predominantly mediated through the p38 MAPK pathway as an inhibitor of p38 MAPK (PD169316), and dominant negative mutants of p38 MAPK could significantly enhance HDMEC survival against gamma-irradiation. Inhibition of the PI3K and MAPK pathways markedly up-regulated gamma-irradiation-mediated p38 MAPK activation resulting in enhanced HDMEC apoptosis. In contrast, VEGF-treated HDMECs were protected from gamma-irradiation-induced apoptosis predominantly through the PI3K/Akt pathway. Bcl-2 expression was markedly elevated in VEGF-treated HDMECs, and it was significantly inhibited by the PI3K inhibitor LY294002. HDMECs exposed to irradiation showed a significant decrease in Bcl-2 expression. In contrast, VEGF-stimulated HDMECs, when irradiated, maintained higher levels of Bcl-2 expression. Taken together our results suggest that gamma-irradiation induces endothelial cell apoptosis predominantly via the activation of p38 MAPK, and VEGF protects endothelial cells against gamma-irradiation predominantly via the PI3K-Akt-Bcl-2 signaling pathway.  相似文献   

10.
11.
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.  相似文献   

12.
Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.  相似文献   

13.
Integrin alpha x (ITGAX), a member of the integrin family, usually serves as a receptor of the extracellular matrix. Recently, accumulating evidence suggests that ITGAX may be involved in angiogenesis in dendritic cells. Herein, we report a direct role of ITGAX in angiogenesis during tumor development. Overexpression of ITGAX in human umbilical vein endothelial cells (HUVECs) enhanced their proliferation, migration, and tube formation and promoted xenograft ovarian tumor angiogenesis and growth. Further study showed that overexpression of ITGAX activated the PI3k/Akt pathway, leading to the enhanced expression of c-Myc, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor 2 (VEGFR2), whereas, the treatment of cells with PI3K inhibitor diminished these effects. Besides, c-Myc was observed to bind to the VEGF-A promoter. By Co-Immunoprecipitation (Co-IP) assay, we manifested the interaction between ITGAX and VEGFR2 or the phosphorylated VEGFR2. Immunostaining of human ovarian cancer specimens suggested that endothelial cells of micro–blood vessels displayed strong expression of VEGF-A, c-Myc, VEGFR2, and the PI3K signaling molecules. Also, overexpression of ITGAX in HUVECs could stimulate the spheroid formation of ovarian cancer cells. Our study uncovered that ITGAX stimulates angiogenesis through the PI3K/Akt signaling–mediated VEGFR2/VEGF-A overexpression during cancer development.  相似文献   

14.
Phosphoinositide 3-kinase (PI3K) mediates essential functions of vascular endothelial growth factor (VEGF), including the stimulation of endothelial cell proliferation and migration. Nevertheless, the mechanisms coupling the receptor VEGFR-2 to PI3K remain obscure. We observed that the Grb2-bound adapter Gab1 is tyrosine-phosphorylated and relocated to membrane fractions upon VEGF stimulation of endothelial cells. We could detect the PI3K regulatory subunit p85 in immunoprecipitates of endogenous Gab1, and vice versa, and measure a Gab1-associated lipid kinase activity upon VEGF stimulation. Furthermore, transfection of the Gab1-YF3 mutant lacking all p85-binding sites strongly repressed PI3K activation measured in vitro. Moreover, Gab1-YF3 severely decreased the cellular amount of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generated in response to VEGF. Furthermore, adenoviral expression of Gab1-YF3 suppressed both Akt phosphorylation and recovery of wounded human umbilical vein endothelial cell monolayers, a VEGF-dependent process involving cell migration and proliferation under PI3K control. Transfection of other Gab1 mutants, lacking Grb2-binding sites or the pleckstrin homology (PH) domain, also prevented Akt activation, further demonstrating Gab1 involvement in PI3K activation. These mutants were also used to show that interactions with both Grb2 and PtdIns(3,4,5)P3 mediate Gab1 recruitment by VEGFR-2. Importantly, Gab1 mobilization was impaired by (i) PI3K inhibitors, (ii) deletion of Gab1 PH domain, (iii) PTEN (phosphatase and tensin homolog deleted on chromosome 10) overexpression to repress PtdIns(3,4,5)P3 production, and (iv) overexpression of a competitor PH domain for PtdIns(3,4,5)P3 binding, which altogether demonstrated that PI3K is also an upstream regulator of Gab1. Gab1 thus appears as a primary actor in coupling VEGFR-2 to PI3K/Akt, recruited through an amplification loop involving PtdIns(3,4,5)P3 and its PH domain.  相似文献   

15.
CD44 is a cell surface adhesion molecule for several extracellular matrix components. We previously showed that CD44 expressed in cancer cells is proteolytically cleaved at the ectodomain through membrane-anchored metalloproteases and that CD44 cleavage plays a critical role in cancer cell migration. Therefore, cellular signals that promote the migration and metastatic activity of cancer cells may regulate the CD44 ectodomain cleavage. Here, we demonstrate that the expression of the dominant active mutant of Ha-Ras (Ha-Ras(Val-12)) induces redistribution of CD44 to the newly generated membrane ruffling area and CD44 ectodomain cleavage. The migration assay revealed that the CD44 cleavage contributes to the Ha-Ras(Val-12)-induced migration of NIH3T3 cells on hyaluronate substrate. Treatment with LY294002, an inhibitor for phosphoinositide 3-OH kinase (PI3K), significantly inhibits Ha-Ras(Val-12)-induced CD44 cleavage, whereas that with PD98059, an inhibitor for MEK, does not. The active mutant p110 subunit of PI3K has also been shown to enhance the CD44 cleavage, suggesting that PI3K mediates the Ras-induced CD44 cleavage. Moreover, the expression of dominant negative mutants of Cdc42 and Rac1 inhibits the Ha-Ras(Val-12)-induced CD44 cleavage. These results suggest that Ras > PI3K > Cdc42/Rac1 pathway plays an important role in CD44 cleavage and may provide a novel molecular basis to explain how the activated Ras facilitates cancer cell migration.  相似文献   

16.
17.
We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1alpha expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal conditions and in pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are not well defined. Protein kinase D (PKD), a newly described serine/threonine protein kinase, has been implicated in many signal transduction pathways and in cell proliferation. We hypothesized that PKD would mediate VEGF signaling and function in endothelial cells. Here we found that VEGF rapidly and strongly stimulated PKD phosphorylation and activation in endothelial cells via VEGF receptor 2 (VEGFR2). The pharmacological inhibitors for phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) significantly inhibited VEGF-induced PKD activation, suggesting the involvement of the PLCgamma/PKC pathway. In particular, PKCalpha was critical for VEGF-induced PKD activation since both overexpression of adenovirus PKCalpha dominant negative mutant and reduction of PKCalpha expression by small interfering RNA markedly inhibited VEGF-induced PKD activation. Importantly, we found that small interfering RNA knockdown of PKD and PKCalpha expression significantly attenuated ERK activation and DNA synthesis in endothelial cells by VEGF. Taken together, our results demonstrated for the first time that VEGF activates PKD via the VEGFR2/PLCgamma/PKCalpha pathway and revealed a critical role of PKD in VEGF-induced ERK signaling and endothelial cell proliferation.  相似文献   

19.
Arai A  Aoki M  Weihua Y  Jin A  Miura O 《Cellular signalling》2006,18(12):2162-2171
Intracellular signaling mechanisms regulating SDF-1-induced chemotaxis of hematopoietic cells have remained elusive. Here we demonstrate that overexpression of the adaptor molecule CrkL enhances SDF-1-induced chemotaxis of hematopoietic BaF3 and 32Dcl3 cells. Overexpression of CrkL also enhanced SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway as well as that of the small GTPases Ras, Rap1, and Rac, while a dominant negative mutant of Ras or Rac suppressed CrkL-enhanced Erk activation. SDF-1 stimulation induced tyrosine phosphorylation of CrkL, which was inhibited by the Src family kinase inhibitor PP1 or by dominant negative mutants of Lyn, thus indicating that Lyn mediated SDF-1-induced phosphorylation of CrkL. However, inhibition of the Lyn kinase activity failed to affect SDF-1-induced activation of the small GTPases and Erk. On the other hand, SDF-1-induced activation of the Erk signaling pathway as well as chemotaxis was inhibited by overexpression of a CrkL mutant lacking the N-terminal SH3 domain, which mediates interaction with various signaling molecules including guanine nucleotide exchange factors for the Ras and Rho family GTPases. SDF-1-induced chemotaxis was also inhibited by the dominant negative Ras or Rac mutant as well as by the MEK inhibitor PD98059. These results indicate that CrkL mediates SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway through Ras as well as Rac in hematopoietic cells and, thereby, plays important roles in the induction of chemotactic response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号