首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

2.
Cytoskeletal filaments are often capped at one end, regulating assembly and cellular location. The actin filament is a right-handed, two-strand long-pitch helix. The ends of the two protofilaments are staggered in relation to each other, suggesting that capping could result from one protein binding simultaneously to the ends of both protofilaments. Capping protein (CP), a ubiquitous alpha/beta heterodimer in eukaryotes, tightly caps (K(d) approximately 0.1-1 nM) the barbed end of the actin filament (the end favored for polymerization), preventing actin subunit addition and loss. CP is critical for actin assembly and actin-based motility in vivo and is an essential component of the dendritic nucleation model for actin polymerization at the leading edge of cells. However, the mechanism by which CP caps actin filaments is not well understood. The X-ray crystal structure of CP has inspired a model where the C termini ( approximately 30 amino acids) of the alpha and beta subunits of CP are mobile extensions ("tentacles"), and these regions are responsible for high-affinity binding to, and functional capping of, the barbed end. We tested the tentacle model in vitro with recombinant mutant CPs. Loss of both tentacles causes a complete loss of capping activity. The alpha tentacle contributes more to capping affinity and kinetics; its removal reduces capping affinity by 5000-fold and the on-rate of capping by 20-fold. In contrast, removal of the beta tentacle reduced the affinity by only 300-fold and did not affect the on-rate. These two regions are not close to each other in the three-dimensional structure, suggesting CP uses two independent actin binding tentacles to cap the barbed end. CP with either tentacle alone can cap, as can the isolated beta tentacle alone, suggesting that the individual tentacles interact with more than one actin subunit at a subunit interface at the barbed end.  相似文献   

3.
Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady‐state levels of filamentous (F‐) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F‐actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F‐actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs.  相似文献   

4.
Lukman S  Robinson RC  Wales D  Verma CS 《Proteins》2012,80(4):1066-1077
Capping protein (CP) is important for the regulation of actin polymerization. CP binds to the barbed end of the actin filament and prevents actin polymerization. This interaction is modulated through competitive binding by regulatory proteins such as myotrophin (V-1) and the capping protein interacting (CPI) motif from CARMIL. The binding site of myotrophin overlaps with the region of CP that binds to the barbed end of actin filament, whereas CPI binds at a distant site. The binding of CPI to the myotrophin-CP complex dissociates myotrophin from CP. Detailed multicopy molecular dynamics simulations suggest that the binding of CPI shifts the conformational equilibria of CP away from states that favor myotrophin binding. This shift is underpinned by allosteric effects where CPI inhibits CP through suppression of flexibility and disruption of concerted motions that appear to mediate myotrophin binding. Accompanying these effects are changes in electrostatic interactions, notably those involving residue K142β, which appears to play a critical role in regulating flexibility. In addition, accessibility of the site on CP for binding the key hydrophobic residue W8 of myotrophin is modulated by CPI. These results provide insights into the modulation of CP by CPI and myotrophin and indicate the mechanism by which CPI drives the dissociation of the myotrophin-CP complex.  相似文献   

5.
We investigated how heterodimeric capping proteins bind to and dissociate from the barbed ends of actin filaments by observing single muscle actin filaments by total internal reflection fluorescence microscopy. The barbed end rate constants for mouse capping protein (CP) association of 2.6 x 10(6) M(-1) s(-1) and dissociation of 0.0003 s(-1) agree with published values measured in bulk assays. The polyphosphoinositides (PPIs), phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)), PI(4,5)P(2), and PI(3,4,5)P(3), prevent CP from binding to barbed ends, but three different assays showed that none of these lipids dissociate CP from filaments at concentrations that block CP binding to barbed ends. The affinity of fission yeast CP for barbed ends is a thousandfold less than mouse CP, because of a slower association rate constant (1.1 x 10(5) M(-1) s(-1)) and a faster dissociation rate constant (0.004 s(-1)). PPIs do not inhibit binding of fission yeast CP to filament ends. Comparison of homology models revealed that fission yeast CP lacks a large patch of basic residues along the actin-binding surface on mouse CP. PPIs binding to this site might interfere sterically with capping, but this site would be inaccessible when CP is bound to the end of a filament.  相似文献   

6.
Clathrin- and actin-mediated endocytosis is a fundamental process in eukaryotic cells. Previously, we discovered Tda2 as a new yeast dynein light chain (DLC) that works with Aim21 to regulate actin assembly during endocytosis. Here we show Tda2 functions as a dimerization engine bringing two Aim21 molecules together using a novel binding surface different than the canonical DLC ligand binding groove. Point mutations on either protein that diminish the Tda2-Aim21 interaction in vitro cause the same in vivo phenotype as TDA2 deletion showing reduced actin capping protein (CP) recruitment and increased filamentous actin at endocytic sites. Remarkably, chemically induced dimerization of Aim21 rescues the endocytic phenotype of TDA2 deletion. We also uncovered a CP interacting motif in Aim21, expanding its function to a fundamental cellular pathway and showing such motif exists outside mammalian cells. Furthermore, specific disruption of this motif causes the same deficit of actin CP recruitment and increased filamentous actin at endocytic sites as AIM21 deletion. Thus, the data indicate the Tda2-Aim21 complex functions in actin assembly primarily through CP regulation. Collectively, our results provide a mechanistic view of the Tda2-Aim21 complex and its function in actin network regulation at endocytic sites.  相似文献   

7.
8.
To investigate physiologic functions and structural correlates for actin capping protein (CP), we analyzed site-directed mutations in CAP1 and CAP2, which encode the alpha and beta subunits of CP in Saccharomyces cerevisiae. Mutations in four different regions caused a loss of CP function in vivo despite the presence of mutant protein in the cells. Mutations in three regions caused a complete loss of all aspects of function, including the actin distribution, viability with sac6, and localization of CP to actin cortical patches. Mutation of the fourth region led to partial loss of only one function-formation of actin cables. Some mutations retained function and exhibited the complete wild-type phenotype, and some mutations led to a complete loss of protein and therefore loss of function. The simplest hypothesis that can explain these results is that a single biochemical property is necessary for all in vivo functions. This biochemical property is most likely binding to actin filaments, because the nonfunctional mutant CPs no longer co-localize with actin filaments in vivo and because direct binding of CP to actin filaments has been well established by studies with purified proteins in vitro. More complex hypotheses, involving the existence of additional biochemical properties important for function, cannot be excluded by this analysis.  相似文献   

9.
V-1 is a 12-kDa protein consisting of three consecutive ANK repeats, which are believed to serve as the surface for protein-protein interactions. It is thought to have a role in neural development for its temporal profile of expression during murine cerebellar development, but its precise role remains unknown. Here we applied the proteomic approach to search for protein targets that interact with V-1. The V-1 cDNA attached with a tandem affinity purification tag was expressed in the cultured 293T cells, and the protein complex formed within the cells were captured and characterized by mass spectrometry. We detected two polypeptides specifically associated with V-1, which were identified as the alpha and beta subunits of the capping protein (CP, alternatively called CapZ or beta-actinin). CP regulates actin polymerization by capping the barbed end of the actin filament. The V-1.CP complex was detected not only in cultured cells transfected with the V-1 cDNA but also endogenously in cells as well as in murine cerebellar extracts. An analysis of the V-1/CP interaction by surface plasmon resonance spectroscopy showed that V-1 formed a stable complex with the CP heterodimer with a dissociation constant of 1.2 x 10(-7) m and a molecular stoichiometry of approximately 1:1. In addition, V-1 inhibited the CP-regulated actin polymerization in vitro in a dose-dependent manner. Thus, our results suggest that V-1 is a novel component that regulates the dynamics of actin polymerization by interacting with CP and thereby participates in a variety of cellular processes such as actin-driven cell movements and motility during neuronal development.  相似文献   

10.
The heterodimeric actin-capping protein (CP) regulates actin assembly and cell motility by binding tightly to the barbed end of the actin filament. Here we demonstrate that myotrophin/V-1 binds directly to CP in a 1:1 molar ratio with a Kd of 10-50 nm. V-1 binding inhibited the ability of CP to cap the barbed ends of actin filaments. The actin-binding COOH-terminal region, the "tentacle," of the CP beta subunit was important for binding V-1, with lesser contributions from the alpha subunit COOH-terminal region and the body of the protein. V-1 appears to be unable to bind to CP that is on the barbed end, based on the observations that V-1 had no activity in an uncapping assay and that the V-1.CP complex had no capping activity. Two loops of V-1, which extend out from the alpha-helical backbone of this ankyrin repeat protein, were necessary for V-1 to bind CP. Parallel computational studies determined a bound conformation of the beta tentacle with V-1 that is consistent with these findings, and they offered insight into experimentally observed differences between the alpha1 and alpha2 isoforms as well as the mutant lacking the alpha tentacle. These results support and extend our "wobble" model for CP binding to the actin filament, in which the two COOH-terminal regions of CP bind independently to the actin filament, and bound CP is able to wobble when attached only via its mobile beta-subunit tentacle. This model is also supported by molecular dynamics simulations of CP reported here. The existence of the wobble state may be important for actin dynamics in cells.  相似文献   

11.
Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers the F-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior.  相似文献   

12.
Bulk solution assays have shown that the isolated CARMIL homology 3 (CAH3) domain from mouse and Acanthamoeba CARMIL rapidly and potently restores actin polymerization when added to actin filaments previously capped with capping protein (CP). To demonstrate this putative uncapping activity directly, we used total internal reflection microscopy to observe single, CP-capped actin filaments before and after the addition of the CAH3 domain from mouse CARMIL-1 (mCAH3). The addition of mCAH3 rapidly restored the polymerization of individual capped filaments, consistent with uncapping. To verify uncapping, filaments were capped with recombinant mouse CP tagged with monomeric green fluorescent protein (mGFP-CP). Restoration of polymerization upon the addition of mCAH3 was immediately preceded by the complete dissociation of mGFP-CP from the filament end, confirming the CAH3-driven uncapping mechanism. Quantitative analyses showed that the percentage of capped filaments that uncapped increased as the concentration of mCAH3 was increased, reaching a maximum of ∼90% at ∼250 nm mCAH3. Moreover, the time interval between mCAH3 addition and uncapping decreased as the concentration of mCAH3 increased, with the half-time of CP at the barbed end decreasing from ∼30 min without mCAH3 to ∼10 s with a saturating amount of mCAH3. Finally, using mCAH3 tagged with mGFP, we obtained direct evidence that the complex of CP and mCAH3 has a small but measurable affinity for the barbed end, as inferred from previous studies and kinetic modeling. We conclude that the isolated CAH3 domain of CARMIL (and presumably the intact molecule as well) possesses the ability to uncap CP-capped actin filaments.  相似文献   

13.
Successful malaria transmission from the mosquito vector to the mammalian host depends crucially on active sporozoite motility. Sporozoite locomotion and host cell invasion are driven by the parasite's own actin/myosin motor. A unique feature of this motor machinery is the presence of very short subpellicular actin filaments. Therefore, F‐actin stabilizing proteins likely play a central role in parasite locomotion. Here, we investigated the role of the Plasmodium berghei actin capping protein (PbCP), an orthologue of the heterodimeric regulator of filament barbed end growth, by reverse genetics. Parasites containing a deletion of the CP beta‐subunit developed normally during the pathogenic erythrocytic cycle. However, due to reduced ookinete motility, mutant parasites form fewer oocysts and sporozoites in the Anopheles vector. These sporozoites display a vital deficiency in forward gliding motility and fail to colonize the mosquito salivary glands, resulting in complete attenuation of life cycle progression. Together, our results show that the CP beta‐subunit exerts an essential role in the insect vector before malaria transmission to the mammalian host. The vital role is restricted to fast locomotion, as displayed by Plasmodium sporozoites.  相似文献   

14.
《The Journal of cell biology》1996,133(6):1293-1305
Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and preventing the addition or loss of actin monomers. To examine the in vivo role of CP, we have performed a molecular and genetic characterization of the beta subunit of capping protein from Drosophila melanogaster. We have identified mutations in the Drosophila beta subunit-these are the first CP mutations in a multicellular organism, and unlike CP mutations in yeast, they are lethal, causing death during the early larval stage. Adult files that are heterozygous for a pair of weak alleles have a defect in bristle morphology that is correlated to disorganized actin bundles in developing bristles. Our data demonstrate that CP has an essential function during development, and further suggest that CP is required to regulate actin assembly during the development of specialized structures that depend on actin for their morphology.  相似文献   

15.
《The Journal of cell biology》1995,131(6):1483-1493
Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.  相似文献   

16.
The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V‐1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V‐1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V‐1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid‐body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid‐body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V‐1 complex, domain motions around a large crevice between the N‐stalk and the CP‐S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V‐1 binding. These newly identified motions are likely to suppress the binding of V‐1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948–956. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
The heterodimeric actin-capping protein (CP) can be inhibited by polyphosphoinositides, which may be important for actin polymerization at membranes in cells. Here, we have identified a conserved set of basic residues on the surface of CP that are important for the interaction with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Computational docking studies predicted the identity of residues involved in this interaction, and functional and physical assays with site-directed mutants of CP confirmed the prediction. The PIP(2) binding site overlaps with the more important of the two known actin-binding sites of CP. Correspondingly, we observed that loss of PIP(2) binding correlated with loss of actin binding among the mutants. Using TIRF (total internal reflection fluorescence) microscopy, we observed that PIP(2) rapidly converted capped actin filaments to a growing state, consistent with uncapping. Together, these results extend our understanding of how CP binds to the barbed end of the actin filament, and they support the idea that CP can "wobble" when bound to the barbed end solely by the C-terminal "tentacle" of its beta-subunit.  相似文献   

18.
Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly.  相似文献   

19.
The cytoskeleton is a key regulator of morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. Changes in the cellular architecture are often assumed to require actin-binding proteins as stimulus-response modulators, because many of these proteins are regulated directly by binding to intracellular second messengers or signaling phospholipids. Phosphatidic acid (PA) is gaining widespread acceptance as a major, abundant phospholipid in plants that is required for pollen tube tip growth and mediates responses to osmotic stress, wounding, and phytohormones; however, the number of identified effectors of PA is rather limited. Here we demonstrate that exogenous PA application leads to significant increases in filamentous actin levels in Arabidopsis suspension cells and poppy pollen grains. To investigate further these lipid-induced changes in polymer levels, we analyzed the properties of a key regulator of actin filament polymerization, the heterodimeric capping protein from Arabidopsis thaliana (AtCP). AtCP binds to PA with a K(d) value of 17 muM and stoichiometry of approximately 1:2. It also binds well to PtdIns(4,5)P(2), but not to several other phosphoinositide or acidic phospholipids. The interaction with PA inhibited the actin-binding activity of CP. In the presence of PA, CP is unable to block the barbed or rapidly growing and shrinking end of actin filaments. Precapped filament barbed ends can also be uncapped by addition of PA, allowing rapid filament assembly from an actin monomer pool that is buffered with profilin. The findings support a model in which the inhibition of CP activity in cells by elevated PA results in the stimulation of actin polymerization from a large pool of profilin-actin. Such regulation may be important for the response of plant cells to extracellular stimuli as well as for the normal process of pollen tube tip growth.  相似文献   

20.
The gene coding for ferric enterobactin binding protein from E. coli O157:H7 was amplifi ed. This gene was cloned and expressed as C-terminal His (6)-tagged protein. The SDS-PAGE analysis of the total protein revealed only two distinct bands, with molecular masses of 31kDa and 34kDa. The Ni-NTA chromatography purifi ed FepB and the osmotically shocked periplasmic fraction of IPTG induced cells showed only a single band of 31 kDa. Polyclonal mouse antibody was raised against the recombinant protein during 4 weeks after immunization. Western blot analysis of the recombinant FepB with mouse antiserum revealeda single band of 31 kDa. Identification and purification of FepB helped reveal its appropriate molecular mass. Polyclonal antibody raised against the recombinant protein reacted with bacterial FepB. The recombinant protein FepB could have a protective effect against E. coli O157:H7 and might be useful as an effective vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号