首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cryopreservation of pronuclear-stage embryos has particular importance in transgenic technology and human assisted reproductive technology (ART). The objective of this study was to improve the efficiency of cryopreservation of pronuclear-stage mouse embryos. Two vitrification methods (solid surface vitrification (SSV) vs. vitrification in cryotube) have been compared with special emphasis on the effect of the exposure of the embryos to the solutions for various times and the sugar content (trehalose, sucrose, or raffinose) of the vitrification solutions. Pronuclear-stage embryos were either exposed to 1 M dimethyl sulfoxide (DMSO) + 1 M propylene-glycol (PG) solution for 2, 5, 10, or 15 min or not exposed to this "equilibration" solution. The vitrification solutions consisted of 2.75 M DMSO and 2.75 M PG in M2 medium supplemented with 1 M trehalose (DPT), 1 M sucrose (DPS), or 1 M raffinose (DPR). In the cryotube method, groups of 15-25 embryos were transferred into a 1.8 ml cryotube containing 30 microl of DPT, DPS, or DPR. After 30 sec, the cryotubes were directly plunged into liquid nitrogen (LN(2)) and stored for 1 day to 1 month. Vitrified samples were warmed by immersing the cryotubes in a 40 degrees C water bath and then immediately diluted with 300 microl of 0.3 M trehalose, sucrose, or raffinose in M2. In the SSV method, after equilibration 15-20 embryos were exposed to DPT, DPS, or DPR solutions for around 20 sec before being dropped in 2-microl drops onto a pre-cooled (-150 to -180 degrees C) metal surface. Vitrified droplets were stored in cryovials in LN(2). Warming was performed by transferring the vitrified droplets into 0.3 M solutions of trehalose, sucrose, or raffinose at 37 degrees C, respectively. Results showed that both SSV and cryotube vitrification methods can result in high rates of in vitro blastocyst development (up to 58.3 and 68.5% with DPR, respectively), not statistically different from that of the controls (58.3 and 64.4%). Even without the equilibration step prior to vitrification, relatively high-survival rates have been achieved, except for the DPS solution. In conclusion, vitrification of pronuclear-stage mouse embryos can result in high rates of in vitro development to blastocyst, and the use of raffinose in the vitrification solution is advantageous to improve cryosurvival.  相似文献   

2.
The present experiments were designed to study the effects of glucose, EDTA, glutamine on the in vitro development of single blastomeres from 2-cell embryos in mouse, and the efficiency of cryopreservation of blastocysts from single blastomers with different vitrification. Single blastomeres derived from female ICR x male BDF1 2-cell embryos were cultured in mKRB with or without glucose, EDTA and glutamine, respectively. The expanded blastocyst rates were significantly different between in mKRB with glucose and without glucose (34% vs 65%); The blastomeres were cultured in mKRB with EDTA and glutamine but glucose, the expanded blastocyst rate (90%) was significantly higher than other groups. The blastocysts derived from single blastomeres were vitrified in liquid nitrogen after equilibration in GFS40 for 0.5-2 min, the survival rate 24%-51%. The blastocysts were pretreated in mPBS with 10% glycerol for 5 min, followed by exposure to GFS40 at 25 degrees C for 0.5 min, then vitrified in liquid nitrogen(two-step method), the survival rate was 61%. However, the survival rates increased to 64% and 70% when the blastocysts were vitrified(one-step method) ater equilibration in EFS40 at 25 degrees C for 0.5-1 min.  相似文献   

3.
The present study was conducted to determine suitable conditions for mouse blastocysts vitrified by a solution containing 25 % v/v (4.5M) ethylene glycol and 25% v/v (3.4M) dimethyl sulfoxide (VSi). In Experiment 1, blastocysts were exposed to 50% diluted VSi (50% VSi) for 10 minutes then to VSi for 0.5 minutes at room temperature (22 approximately 24 degrees C) or at 4 degrees C, followed by vitrification. The survival rates of these embryos exposed at each temperature were not significantly different. In Experiment 2, embryos were exposed directly to VSi for various time periods at room temperature and diluted in mPBS with 0.5 M sucrose without vitrification. The viability of embryos decreased after more than a 3 minute exposure. When the embryos were exposed to VSi for 0.5, 1, 1.5 and 2 minutes followed by vitrification, the survival rates were 78, 80, 76 and 50%, respectively. In Experiment 3, embryos were vitrified after exposure to 50% VSi for various time periods and then to VSi for 0.5 minutes at room temperature. One minute exposure to 50% VSi resulted in the highest survival rate. In Experiment 4 and 5, the cooling rate (from approximately 70 to approximately 2500 degrees C/minute), sucrose concentration (0, 0.5 and 1 M) of dilution solution, and dilution time (1 or 5 minutes) did not affect the viability of the vitrified embryos. Following exposure to 50% VSi for 1 minute and to VSi for 0.5 minutes at room temperature, embryos were cooled 1) at approximately 2500 degrees C/minute and diluted in 0.5 M sucrose in mPBS after warming or 2) at approximately 200 degrees C/minute and diluted in mPBS. In vivo development rates after the transfer to recipients were 38 and 42%, respectively. These values were similar to that of fresh control embryos.  相似文献   

4.
Vitrification of rat embryos at various developmental stages   总被引:6,自引:0,他引:6  
Han MS  Niwa K  Kasai M 《Theriogenology》2003,59(8):1851-1863
The effect of developmental stage on the survival of cryopreserved rat embryos was examined. Wistar rat embryos at various developmental stages were vitrified by a 1-step method with EFS40, an ethylene glycol-based solution, or by a 2-step method with EFS20 and EFS40. After warming, the survival of the embryos was assessed by their morphology, their ability to develop to blastocysts (or expanded blastocysts for blastocysts) in culture, or their ability to develop to term after transfer. Most (91-100%) of the embryos recovered after vitrification were morphologically normal in all developmental stages. However, the developmental ability of 1-cell embryos was quite low; exposing them to EFS40 for just 0.5 min decreased the in vitro survival rate from 76 to 9%. The survival rates of 2-cell embryos and blastocysts, both in vitro and in vivo, were significantly higher with a 2-step vitrification process than with a 1-step vitrification process. Very high in vitro survival rates (94-100%) were obtained in 4- to 8-cell embryos and morulae in the 1-step method. Although survival rates in vivo of 4-cell (40%) and 8-cell (4%) embryos vitrified by the 1-step method were comparatively low, the values were similar to those obtained in non-vitrified fresh embryos. When morulae vitrified by the 1-step method were transferred to recipients, the in vivo survival rate (61%) was high, and not significantly different from that of fresh embryos (70%). These results show that rat embryos at the 2-cell to blastocyst stages can be vitrified with EFS40, and that the morula stage is the most feasible stage for embryo cryopreservation in this species.  相似文献   

5.
Mouse oocytes and embryos at various developmental stages were exposed directly to an ethylene glycol-based vitrification solution (EFS) for 2 or 5 minutes at 20 degrees C. They were then vitrified at -196 degrees C and were warmed rapidly. At the germinal vesicle stage, the proportion of morphologically normal oocytes was 36 to 39% if they had cumulus cells, whereas in cumulus-removed immature oocytes and in ovulated oocytes it was only 2 to 4%. This low survival was attributed to the harmful action of ethylene glycol. After fertilization, on the other hand, the post-warming survival rate of 1-cell zygotes, as assessed by cleavage to the 2-cell stage, increased markedly (62%). As the developmental stage proceeded, higher proportions of vitrified embryos developed to expanded blastocysts; the rates increased up to 77 and 80% in 2-cell and 4-cell embryos, respectively. For embryos at the 8-cell, morula and early blastocyst stages, the proportion of embryos developed after vitrification (90 to 95%) was not significantly different from that of the untreated embryos (95 to 100%) when the period of exposure to EFS solution was 2 minutes. As the blastocoel began to enlarge, however, survival began to decrease again, with rates of 79 and 57% in blastocysts and expanded blastocysts, respectively. After the cryopreserved 2-cell, 4-cell and 8-cell embryos as well as morulae and blastocysts were transferred to recipients, 43 to 57% of the recipients became pregnant, and 48 to 60% of these various stage embryos developed into live young.  相似文献   

6.
A. Dhali 《Theriogenology》2009,71(9):1408-1416
The effect of modified droplet vitrification was assessed on cellular actin filament organization, apoptosis related gene expression and development competence in mouse embryos cultured in vitro. Mouse zygotes, 2-cell embryos and morulae were vitrified in ethylene glycol (VS-1) and ethylene glycol plus DMSO (VS-2) and thawed by directly placing the vitrified drop into 0.3 M sucrose solution at 37 °C. High recovery (93-99%) of morphologically normal embryos was evident following vitrification and thawing. No detectable actin filament disruption was observed in the embryos at any development stage following vitrification and thawing and/or in vitro culture. The expression pattern of Bax, Bcl2 and p53 genes was altered (P < 0.05) in vitrified zygotes and 2-cell embryos, but not in morulae. Although a large proportion of the vitrified zygotes (59.5 ± 4.4% in VS-1 and 57.9 ± 4.5% in VS-2; mean ± S.E.M.) and 2-cell embryos (63.1 ± 4.4% in VS-1 and 59.2 ± 4.3% in VS-2) developed into blastocysts, development of control embryos (70.2 ± 5.0% of zygotes and 75.5 ± 4.4% of 2-cell embryos) into blastocysts was higher (P < 0.05). In contrast, development of the control and vitrified morulae into blastocysts (more than 85%) was similar. We concluded that the modified droplet vitrification procedure supported better survival of morula stage compared to zygotes and 2-cell mouse embryos.  相似文献   

7.
It has been known that different protocols are used for embryo preservation at different stages due to different sensitivity to the physical and physiological stress caused by vitrification. In this study, we developed a common vitrification protocol using carboxlated ε-poly-l-lysine (COOH-PLL), a new cryoprotective agent for the vitrification of mouse embryos at different stages. The IVF-derived Crl:CD1(ICR) x B6D2F1/Crl pronuclear, 2-cell, 4-cell, and 8-cell, morula and blastocyst stage embryos were vitrified with 15% (v/v) ethylene glycol (EG) and 10% (w/v) COOH-PLL (E15P15) or 15% (v/v) EG and 15% (v/v) dimethyl sulfoxide (E15D15) using the minimal volume cooling method. The survival of vitrified embryos from pronuclear to blastocyst stages was equivalent between E15P15 and E15D15 groups. However, the rate of development to blastocysts was significantly lower in E15P15 than E15D15. The rates of survival and development to blastocysts were dramatically improved by a slight modification of EG and COOH-PLL concentrations (E20P10). After transferring 17 (E20P10) and 15 (E15D15) vitrified/warmed blastocysts, 8 and 7 pups were obtained (47.1% and 46.7%, respectively). Taken together, these results indicate that our vitrification protocol is appropriate for the vitrification of mouse embryos at different stages.  相似文献   

8.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

9.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

10.
This paper reports studies on the effects of re-vitrification by the CPS (Closed Pulled Straw) method on the development of 4-cell stage mouse embryos. The procedure involved culturing 2-cell mouse embryos in G-1 medium until the 4-cell stage followed by the division of the normal 4-cell stage embryos into a control group (non-vitrified) and two experimental subgroups (vitrified and re-vitrified). Embryos in the vitrified subgroup were cryopreserved by the CPS vitrification method. In the second experimental subgroup (re-vitrified), embryos that were already vitrified were warmed and cryopreserved again by the same method. There was no significant reduction in the rate of blastocyst formation after vitrification and re-vitrification. However, re-vitrification reduced the total cell number, ICM (inner cell mass) percent and blastocyst diameter (P<0.05). These results showed that vitrification and re-vitrification by the CPS method did not negatively affect the development of vitrified-warmed 4-cell mouse embryos, whereas re-vitrification significantly reduced both the cell number and diameter of blastocysts.  相似文献   

11.
Preventing intracellular ice formation is essential to cryopreserve cells. Prevention can be achieved by converting cell water into a non-crystalline glass, that is, to vitrify. The prevailing belief is that to achieve vitrification, cells must be suspended in a solution containing a high concentration of glass-inducing solutes and cooled rapidly. In this study, we vitrified 1-cell mouse embryos and examined the effect of the cooling rate, the warming rate, and the concentration of cryoprotectant on cell survival. Embryos were vitrified in cryotubes. The vitrification solutions used were EFS20, EFS30, and EFS40, which contained ethylene glycol (20, 30 and 40% v/v, respectively), Ficoll (24%, 21%, and 18% w/v, respectively) and sucrose (0.4 0.35, and 0.3 M, respectively). A 5-μl EFS solution suspended with 1-cell embryos was placed in a cryotube. After 2 min in an EFS solution at 23 °C, embryos were vitrified by direct immersion into liquid nitrogen. The sample was warmed at 34 °C/min, 4,600 °C/min and 6,600 °C/min. With EFS40, the survival was low regardless of the warming rate. With EFS30 and EFS20, survival was also low when the warming rate was low, but increased with higher warming rates, likely due to prevention of intracellular ice formation. When 1-cell embryos were vitrified with EFS20 and warmed rapidly, almost all of the embryos developed to blastocysts in vitro. Moreover, when vitrified 1-cell embryos were transferred to recipients at the 2-cell stage, 43% of them developed to term. In conclusion, we developed a vitrification method for 1-cell mouse embryos by rapid warming using cryotubes.  相似文献   

12.
Gajda B  Smorag Z 《Theriogenology》1993,39(2):499-506
The effects of equilibration time, glycerol (GLY), and 1,2-propanediol (PROH) concentration, and of vitrification and sucrose solution on the viability of 1- and 2-cell rabbit embryos were investigated. After collection, the embryos were equilibrated for 5 or 10 minutes in phosphate buffered saline (PBS) containing 10% GLY-20% PROH and were exposed for 30 seconds at 4 degrees C or were exposed and vitrified in one of two vitrification solutions 35% GLY-35% PROH or 20% GLY-50% PROH. The in vitro survival rates of 1-cell embryos equilibrated for both 5 and 10 minutes were lower (34.0 and 48.0%, respectively) than those of 2-cell embryos (78.8 and 68.5%, respectively; P<0.01). No differences were noted in the viability of embryos exposed to the 2 vitrification solutions. Following vitrification in a mixture of 35% GLY-35% PROH, the survival rates of 1- and 2-cell embryos were 18.3 and 13.7% and 19.6 and 10.4% for 5 and 10 minutes of equilibration, respectively. The survival rates of 1- and 2-cell embryos vitrified in a solution of 20% GLY-50% PROH were 25.7 and 35.4% and 26.2 and 21.3% for 5 and 10 minutes of equilibration, respectively. The survival rates of 1-and 2-cell embryos stored in 1M sucrose solution were 63.8 and 84.0%, respectively. In conclusion, the viability of vitrified 1- and 2-cell rabbit embryos was reduced as a consequence of their equilibration before vitrification, the exposure to vitrification solution and the dilution in a sucrose solution rather than of the vitrification process itself.  相似文献   

13.
Bovine blastocysts were produced through maturation, fertilization, and development in vitro. For vitrification, solutions designated EFS, GFS, and PFS were prepared; these were 40% ethylene glycol, 40% glycerol, and 40% propylene glycol, respectively, diluted in modified phosphate-buffered saline (PBS) containing 30% Ficoll + 0.5 M sucrose. The embryos were exposed to the solutions in one step at room temperature, kept in the solutions for various times, vitrified in liquid nitrogen, and warmed rapidly. When the embryos were vitrified in EFS solution after 1 or 2 min exposure, the postwarming survival rate, assessed by the reexpansion of the blastocoel, was 74–77%. However, when the exposure time was extended to 3 min or longer, this rate dropped to 7–0%. This reduction was attributed to the toxicity of ethylene glycol. Of the embryos vitrified in GFS solution, 53% survived when they were cooled after 1 min exposure; as the duration of the exposure increased, the survival rate increased, reaching a peak (72%) at 4 min. The rate then decreased gradually with exposure time. In PFS solution, embryos surviving after vitrification were recovered only with 1 min exposure (33%), reflecting the high toxicity of propylene glycol. After vitrification in EFS or GFS solution, two embryos were nonsurgically transferred into each of 14 recipient animals. Of the 14 recipients, ten (71%) became pregnant; two resulted in early stillbirths, four recipients delivered twins (four alive and four stillborn), and two delivered single live calves, demonstrating the effectiveness of this simple vitrification method for the cryopreservation of in-vitro-produced bovine blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

14.
This study was conducted to evaluate the effects of developmental stage of in vitro produced (IVP) ovine embryos and the type of vitrification procedure used on embryo cryotolerance.The IVP embryos were vitrified at five different developmental stages: 4-, 8- and 16-cell, morula, and blastocyst. For each stage, half of the embryos were vitrified in either 30 μl 3.4 M glycerol + 4.6 M ethylene glycol in straw (method 1) or in <0.1 μl 2.7 M ethylene glycol + 2.1 M Me2SO + 0.5 M sucrose placed on the inner surface of a straw (method 2) of vitrification solution, based on two different procedures. After warming embryo viability was determined by assessing the rates of re-expansion, survival, and blastocyst formation. The quality of surviving embryos was evaluated by their hatching rate and blastocyst cell numbers. In both vitrification methods, embryo survival progressively increased as the developmental stage progressed. In method 1 few of the early cleavage stage embryos (4-, 8- and 16-cell) could reach to the blastocyst stage following warming. There was no significant difference in blastocyst cell numbers (total, ICM, and trophectoderm cells) or hatching rate of blastocysts derived from vitrified embryos at different developmental stages. The number of dead cells in vitrified blastocysts in method 1 was higher than for non-vitrified blastocysts (P < 0.05). The number of apoptotic cells in vitrified blastocysts was higher than for non-vitrified counterparts (P < 0.05). In conclusion, both the developmental stage of IVP ovine embryos and the method of vitrification have a significant effect on the viability and developmental competence of sheep embryos.  相似文献   

15.
This study investigated effects of hexoses, fetal calf serum (FCS), and phenazine ethosulfate (PES) during the culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. The basal, control medium was chemically defined (CDM) plus 0.5% fatty acid-free BSA. In vitro-produced bovine zygotes were cultured in CDM-1 with 0.5 mM glucose; after 60 hr, 8-cell embryos were cultured 4.5 days in CDM-2. The 8-cell embryos were randomly allocated to a 2 x 3 x 2 x 3 factorial experimental design with two energy substrates (2 mM glucose or fructose); three additives (0.3 microM PES, 10% FCS, and control); two cryopreservation methods using no animal products (conventional slow freezing or vitrification); and semen from three bulls with two replicates for each bull. A total of 1,107 blastocysts were produced. Fructose resulted in 13% more blastocysts per oocyte than glucose (37.2% vs. 32.9%), and per 8-cell embryo (51.3% vs. 45.3%; P < 0.01). No differences were found for additives (P > 0.1) control, FCS, or PES for blastocysts per oocyte or per 8-cell embryo. There was a significant interaction (P < 0.05) between additives and hexoses for blastocyst production; although trends were similar, the benefit of fructose compared to glucose was greater for controls than for FCS or PES. Culture of embryos with PES, which reduces cytoplasmic lipid content, improved cryotolerance of bovine embryos; post-cryopreservation survival of blastocysts averaged over vitrification and slow freezing (between which there was no difference) was 91.9%, 84.9%, and 60.2% of unfrozen controls (P < 0.01) for PES, control, and FCS groups, respectively.  相似文献   

16.
The objective of this study was to investigate the survival and development of porcine cloned embryos vitrified by Cryotop carrier at the zygote, 2- and 4-cell stages. The quality of resultant blastocysts was evaluated according to their total cell number, apoptotic cell rate, reactive oxygen species (ROS) production, glutathione (GSH) content and mRNA expression levels of genes related to embryonic development. The survival rates of zygotes, 2- and 4-cell embryos after vitrification did not differ from those of their fresh counterparts. Vitrification still resulted in significantly decreased blastocyst formation rates of these early-stage embryos. Moreover, the total cells, apoptotic rate, ROS and GSH levels in resultant blastocysts were unaffected by vitrification. The mRNA expression levels of PCNA, CPT1, POU5F1 and DNMT3B in the blastocysts derived from vitrified early-stage embryos were significantly higher than those in the fresh blastocysts, but there was no change in expression of CDX2 and DNMT3A genes. In conclusion, our data demonstrate that the early-stage porcine cloned embryos including zygotes, 2- and 4-cells can be successfully vitrified, with respectable blastocyst yield and quality.  相似文献   

17.
Vitrification is a novel cryopreservation method for mammalian blastocysts. This study was designed to compare different vitrification methods and slow freezing for their effects on survival rate and DNA integrity in mouse and human blastocysts. In Experiment 1, embryo survival and DNA integrity were compared between mouse blastocysts with collapsed and non‐collapsed blastoceles. In Experiment 2, embryo survival and DNA integrity were compared between vitrified and slow‐frozen mouse blastocysts. In Experiment 3, embryo survival and DNA integrity were compared between vitrified and slow‐frozen human blastocysts. Fresh blastocysts were used as controls in all experiments. Higher (P < 0.05) blastocyst survival rates were obtained in mouse blastocysts vitrified with collapsed versus intact blastoceles, although DNA‐integrity indices in the surviving blastocysts were the same among vitrified and fresh blastocysts. More mouse blastocysts (P < 0.05) survived after vitrification (100%) as compared to slow freezing (82.5%). DNA‐integrity indices examined in the surviving blastocysts were also higher (P < 0.001) in fresh (93.6%) and vitrified/warmed (93.7%) blastocysts than in slow‐frozen/thawed (75.8%) ones. More human blastocysts survived with a higher DNA‐integrity index after vitrification/warming than after slow freezing/thawing. These results indicate that higher survival rates can be obtained by vitrification of blastocele‐collapsed blastocysts, and that vitrification causes less cell apoptosis in both mouse and human blastocysts compared to slow freezing. Vitrification of blastocysts after blastocele collapse by single laser pulse supports a higher survival rate and less DNA apoptosis, suggesting that laser blastocele collapse is a safe procedure for blastocyst vitrification. Mol. Reprod. Dev. 79: 229–236, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Rall and Fahy's (1985) vitrification procedure for the cryopreservation of 8-cell embryos was applied to unfertilized mouse oocytes. Unchanged, this method resulted in a mean of 24.1% of vitrified oocytes fertilizing and developing to blastocysts in vitro. Exposure of oocytes to the cryoprotectant media, but without the vitrification, resulted in 30.8% developing to blastocysts. Modifications to the durations of and media used in the dilution and equilibration steps of the procedure produced a final protocol giving a mean of 55.4% of vitrified oocytes and 72.4% of nonvitrified VS1-exposed oocytes developing to blastocysts; 85.7% of control oocytes develop to blastocysts. Osmotically induced damage was found to be the most important cause of loss of viability in these methods. Cooling of oocytes to 5-8 degrees C during the procedure had no significant effect on their viability. No parthenogenetic activation of oocytes occurred as a result of exposure to the procedure.  相似文献   

19.
Stage-dependent viability of vitrified rabbit embryos   总被引:1,自引:0,他引:1  
Smorag Z  Gajda B  Wieczorek B  Jura J 《Theriogenology》1989,31(6):1227-1231
The aim of the work was to determine the susceptibility of rabbit embryos to vitrification at different developmental stages. The experiment was carried out on 676 embryos at 1-, 2- and 8-to 16-cell stages as well as the morula and blastocyst stages. As a vitrification medium, a mixture of 30% 1,2-propanediol + 30% glycerol (Solution I), or 35% 1,2-propanediol + 35% glycerol (Solution II), was used. The embryos were frozen in glass ampules placed in nitrogen vapour for 5 min before being plunged into liquid nitrogen. Dilution after rapid thawing was done in one step in a 1-M sucrose solution. After vitrification in Solution I, none of the 1- or 2-cell embryos survived, whereas the survival rate of 8-to 16-cell embryos, morula and blastocysts, was 23.0, 82.7 and 78.5%, respectively. After vitrification in Solution II, the survival rate of 1-, 2- and 8-to 16-cell embryos was 20.0, 43.8 and 92.9%, respectively. The proportion of live offspring on the Day 28 after transfer of 68 vitrified morula was 26.5% compared with 24.0% in the control group. Thus, the proposed vitrification procedures can be useful in the cryopreservation of rabbit embryos.  相似文献   

20.
Lin TA  Chen CH  Sung LY  Carter MG  Chen YE  Du F  Ju JC  Xu J 《Theriogenology》2011,75(4):760-768
The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号