首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

2.
Insulin rapidly produced an increase in per cent of total heart glycogen synthase in the I form in fed rats. In fasted rats the response was diminished and delayed. In diabetic animals there was no response over the 15-min time period studied. Since synthase phosphatase activity is necessary for synthase D to I conversion, the phosphatase activity was determined in extracts from these groups of animals. In the fasted and diabetic rats phosphatase activity was less than one-half of that in fed animals. Administration of insulin to fasting animals increased synthase phosphatase activity to a level approaching that of fed animals by 15 min. In diabetic animals insulin also stimulated an increase in synthase phosphatase activity but 30 min were required for full activation. Insulin had no effect in normal fed animals. Insulin activation of synthase phosphatase activity in heart extracts from fasted animals was still present after Sephadex G-25 chromatography and ammonium sulfate precipitation. Thus insulin had induced a stable modification of the phosphatase itself or of its substrate synthase D rendering the latter a more favorable substrate for the reaction. A difference in sensitivity of the reaction to glycogen inhibition was present between fed and fasted animals. Increasing concentrations of glycogen had only a slight inhibitory effect in extracts from fed animals but considerably reduced activity in extracts from fasted animals. Insulin administration reduced the sensitivity of the phosphatase reaction to glycogen inhibition. This could explain, at least in part, the increased phosphatase activity noted in the insulin-treated, fasted rats since glycogen was routinely added to the homogenizing buffer.  相似文献   

3.
Disrupting the interaction between glycogen phosphorylase and the glycogen targeting subunit (G(L)) of protein phosphatase 1 is emerging as a novel target for the treatment of type 2 diabetes. To elucidate the molecular basis of binding, we have determined the crystal structure of liver phosphorylase bound to a G(L)-derived peptide. The structure reveals the C terminus of G(L) binding in a hydrophobically collapsed conformation to the allosteric regulator-binding site at the phosphorylase dimer interface. G(L) mimics interactions that are otherwise employed by the activator AMP. Functional studies show that G(L) binds tighter than AMP and confirm that the C-terminal Tyr-Tyr motif is the major determinant for G(L) binding potency. Our study validates the G(L)-phosphorylase interface as a novel target for small molecule interaction.  相似文献   

4.
Contrary to the accepted feedback control mechanism of glycogen biosynthesis in skeletal muscle, evidence is presented here leading to the conclusion that glycogen does not control the activity of glycogen synthase phosphatase in intact human skeletal muscle tissue.  相似文献   

5.
In glycogen particle suspensions prepared from fed rats given either glucagon or glucose in order to increase or decrease the phosphorylase a concentration, respectively, glucose stimulation of synthase phosphatase activity was observed. In preparations from glucagon-treated rats, addition of glucose stimulated synthase and phosphorylase phosphatase simultaneously and not sequentially. Synthase phosphatase stimulation was glucose concentration dependent even when phosphorylase a had been rapidly reduced to a low level. The estimated A0.5 for glucose stimulation of synthase phosphatase activity was 27 mM. An A0.5 for glucose stimulation of phosphorylase phosphatase activity could not be estimated since activity was still increasing with concentrations of glucose as high as 200 mM. In preparations from glucose-treated rats which contain virtually no phosphorylase a, glucose stimulation was still apparent but the A0.5 was increased modestly (36 mM). Stimulation of synthase phosphatase activity was specific for glucose. Several other monosaccharides and the polyhydric alcohol sorbitol were ineffective.  相似文献   

6.
A liver glycogen pellet preparation previously found to contain synthase D phosphatase activity was shown to contain also phosphohistone phosphatase activity. Pellet phosphohistone phosphatase and synthase D phosphatase competed for the same substrates and appeared to be the same enzyme. ATP, a potent inhibitor, and G-6-P, a potent activator of the synthase phosphatase reaction, had little effect on the phosphohistone phosphatase reaction. These observations suggest that the ATP and G-6-P effects are relatively specific and are probably caused by binding to the synthase D substrate. The observed effects of NaCl and KCl were more complex. They stimulated phosphohistone phosphatase activity but strikingly inhibited synthase phosphatase activity. Sodium fluoride inhibited both reactions.  相似文献   

7.
8.
9.
10.
11.
The kinetics of a synthase phosphatase reaction inhibited by ATP-Mg in a liver glycogen particle preparation were complex. In the presence of a physiological concentration of ATP-Mg, synthase phosphatase activity in the glycogen particle follows a biphasic course. Initially, the reaction was inhibited but later the reaction rate accelerated. The reaction was inhibited but the rate was constant in the presence of ATP-Mg with the addition of a physiological concentration of glucose 6-phosphate (Glc 6-P). Therefore, in most subsequent experiments Glc 6-P was added. The concentration of ATP-Mg at which 50% maximal inhibition (I0.5) occurred was approximately 0.1 mM in preparations obtained from rats given glucagon prior to being killed. In preparations from animals given glucose, the I0.5 was increased to 2.0 mM. The maximum inhibition was little changed in preparations from glucose- or glucagon-treated animals. Thus, administration of glucose in vivo reduced the sensitivity of the synthase phosphatase to ATP-Mg inhibition. Complexes of ATP with paramagnetic ions such as Co2+ and Mn2+ were less inhibitory than complexes with diamagnetic ions, including Ca2+ and Mg2+. Magnesium complexes of adenosine tetraphosphate and 5'-adenylimidodiphosphate also were inhibitory. Inhibition was independent of phosphorylase a and not a nonspecific, polyvalent anion effect. The best explanation for the distinctive effects of ATP-Mg in preparations from glucagon- and glucose-treated animals is that the respective treatments promote and stabilize different forms of synthase D or possibly synthase phosphatase with different affinities for ATP-Mg. These forms are interconvertible, as previously suggested, in studies employing EDTA (20).  相似文献   

12.
Correlation of the changes in phosphorylase a concentration with the synthase phosphatase velocity in a glycogen particle preparation in the presence of EDTA revealed that the initial synthase phosphatase rate was greatest in extracts from glucose-treated rats and least in extracts from glucagon-treated rats. In all cases the velocity increased with time and with a decrease in phosphorylase a. However, a threshold release of phosphatase activity when phosphorylase a reached a critical level was not observed. The data are compatible with either an independent regulation of synthase phosphatase by glucose and glucagon or regulation of the activity by phosphorylase over a range of phosphorylase a concentrations.  相似文献   

13.
Phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase results in the incorporation of 32P into two major tryptic peptides (P-1 and P-2) which are identified by isoelectric focusing on polyacrylamide gel. When 32P-labeled synthase is incubated with rabbit muscle phosphoprotein phosphatase both P-1 and P-2 are hydrolyzed. Incubation of 32P-labeled synthase with human placental alkaline phosphatase results in a specific hydrolysis of P-1. Measurement of the increase in synthase activity ratio accompanied by the dephosphorylation of P-1 with human placental alkaline phosphatase and, subsequently, of P-2 with phosphoprotein phosphatase shows that both P-1 and P-2 affect the glucose-6-P dependency of the synthase.  相似文献   

14.
Hepatocytes from adrenalectomized 48 h-starved rats responded to increasing glucose concentrations with a progressively more complete inactivation of phosphorylase. Yet no activation of glycogen synthase occurred, even in a K+-rich medium. Protein phosphatase activities in crude liver preparations were assayed with purified substrates. Adrenalectomy plus starvation decreased synthase phosphatase activity by about 90%, but hardly affected phosphorylase phosphatase activity. Synthase b present in liver extracts from adrenalectomized starved rats was rapidly and completely converted into the a form on addition of liver extract from a normal fed rat. Glycogen synthesis can be slowly re-induced by administration of either glucose or cortisol to the deficient rats. In these conditions there was a close correspondence between the initial recovery of synthase phosphatase activity and the amount of synthase a present in the liver. The latter parameter was strictly correlated with the measured rate of glycogen synthesis in vivo. The decreased activity of synthase phosphatase emerges thus as the single factor that limits hepatic glycogen deposition in the adrenalectomized starved rat.  相似文献   

15.
16.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

17.
Summary In a previous report it was shown that EDTA inhibition of liver glycogen synthase phosphatase activity in preparations from normal, fed rats could be increased upon glucagon or cAMP treatment. This occurred without a change in the half-maximum inhibitory concentration of EDTA. Glucose administration to animals resulted in decreased EDTA inhibition. The inhibitory action of EDTA has been further characterized by comparing its action with that of other chelators (CDTA and EGTA) and examining the effects of various divalent cations on chelator inhibition. Both CDTA and EDTA which differ structurally were inhibitory at 5 mm concentrations whereas EGTA which is structurally similar to EDTA was not inhibitory at concentrations up to 10 mm. The lack of inhibition by EGTA could be explained by its weak affinity for Mg++ in the preparation. A comparison of CDTA and EDTA revealed that CDTA was a more potent inhibitor than EDTA (I0.5, 0.15 mm vs 0.3 mm). Glucagon and glucose treatment of rats resulted in changes in CDTA inhibition which closely paralleled those of EDTA. A large group of divalent cations were tested but only Mg++, Ca++, and Mn++ both prevented and reversed CDTA or EDTA inhibition. Fifty percent reversal using either chelator occurred at calculated free-metal ion concentrations of approximately 2 µm, 0.08 µm and 0.0004 µm, respectively. Thus, it is clear that EDTA inhibition is due to its chelation effect and is not due to a nonspecific anionic effect.  相似文献   

18.
Zhang T  Wang S  Lin Y  Xu W  Ye D  Xiong Y  Zhao S  Guan KL 《Cell metabolism》2012,15(1):75-87
Glycogen phosphorylase (GP) catalyzes the rate-limiting step in glycogen catabolism and plays a key role in maintaining cellular and organismal glucose homeostasis. GP is the first protein whose function was discovered to be regulated by reversible protein phosphorylation, which is controlled by phosphorylase kinase (PhK) and protein phosphatase 1 (PP1). Here we report that lysine acetylation negatively regulates GP activity by both inhibiting enzyme activity directly and promoting dephosphorylation. Acetylation of GP Lys(470) enhances its interaction with the PP1 substrate-targeting subunit, G(L), and PP1, thereby promoting GP dephosphorylation and inactivation. We show that GP acetylation is stimulated by glucose and insulin and inhibited by glucagon. Our results provide molecular insights into the intricate regulation of the classical GP and a functional crosstalk between protein acetylation and phosphorylation.  相似文献   

19.
Laforin, encoded by the EPM2A gene, is a dual specificity protein phosphatase that has a functional glycogen-binding domain. Mutations in the EPM2A gene account for around half of the cases of Lafora disease, an autosomal recessive neurodegenerative disorder, characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of Lafora bodies, which contain polyglucosan, a poorly branched form of glycogen, in neurons and other tissues. We examined the level of laforin protein in several mouse models in which muscle glycogen accumulation has been altered genetically. Mice with elevated muscle glycogen have increased laforin as judged by Western analysis. Mice completely lacking muscle glycogen or with 10% normal muscle glycogen had reduced laforin. Mice defective in the GAA gene encoding lysosomal alpha-glucosidase (acid maltase) overaccumulate glycogen in the lysosome but did not have elevated laforin. We propose, therefore, that laforin senses cytosolic glycogen accumulation which in turn determines the level of laforin protein.  相似文献   

20.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号