首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of 3H-leucine by leaf fragments of Lycopersicon esculentum Mill. cv. Rutgers and L. hirsutum Humb. & Bonpl., a wild tomato, was studied. Two altitudinal races of L. hirsutum were used which differed in chilling tolerance. The temperature dependence of uptake was initially similar for all plant varieties. However, at temperatures below about 11°C, uptake progressively decreased in the more chilling-sensitive varieties ( L. esculentum , Low-altitude L. hirsutum ), but not in the more chilling-tolerant (high-altitude L. hirsutum ) with increasing preincubation time. More than 60 min preincubation was required for this effect, and it was greatest at the lower temperatures. When leaf fragments, chilled for short periods of time (>22 h), were returned to 22°C, initial rates of uptake were recovered within 2 h. The relationship between membrane lipid changes and membrane protein activity under chill stress is discussed.  相似文献   

2.
The influence of unfavourable climatic conditions at the onset of the growth period on chilling-sensitive tomato (Lycopersicon esculentum Mill., cv. Abunda) was studied by exposing young plants to combinations of low temperature and low light (60–100 mol quanta · m–2 · s–1) for several weeks. When the temperature did not decrease below a critical point (8 ° C) no loss of developmental capacity of the plants was detected. However, while new leaves were readily formed upon return to normal growth conditions (22/18 °C, day/night, in a greenhouse), net accumulation of biomass showed a lag phase of approximately one week. This delay was accompanied by a strong, irreversible inhibition of photosynthesis in the fully expanded leaves which had been exposed to the chilling treatment. When plants were subjected to temperatures below 8 ° C, survival rates decreased after three weeks at 6 ° C and irreversible damage of apical meristematic tissue occurred. Drought-hardening prior to chilling ensured survival at 6 ° C and protected the plants against meristem loss.Abreviation Chl chlorophyll Thanks are due to G.P. Telkamp for technical assistance. This research is financially supported by the Netherlands Technology Foundation (STW, Utrecht, The Netherlands), and is coordinated by the Foundation for Biological Research (BION, 's-Gravenhage, The Netherlands).  相似文献   

3.
The response of tomato plants to various chilling treatments was studied using two approaches for the measurement of photosynthetic activity. One involved the use of a portable fluorometer for the measurement of in-vivo chlorophyll fluorescence, while the other employed a newly introduced photoacoustic system which allowed changes in oxygen evolution to be followed in a leaf disc. A strong correlation was found between results obtained by each system and those obtained by a conventional open gas-exchange system for the determination of CO2 uptake. Both systems of measurements could readily distinguish between the effects of chilling in the dark (at 3° C for 18 h) and chilling at high photon flux density (2000 mol m-2 s-1 for 5h at 5° C). Chilling in the dark had practically no effect on the quantum yield of oxygen evolution, chlorophyll fluorescence or CO2 uptake, while chilling at excessively high photon flux density resulted in a sharp reduction (50–70%) in the quantum yields obtained. The results support the view that photosystem II cannot be the primary site of damage by chilling in the dark, although it is significantly affected by chilling at high light intensity.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PA photoacoustic - PFD photon flux density - PSII photosystem II  相似文献   

4.
Tomato fruits are sensitive to low temperature and develop chilling injury, while at nonchilling temperatures they ripen rapidly. Previously, a hot-air treatment was found to reduce the sensitivity of the fruit to low temperatures. In the present study hot air was compared to hot water and their effects on reducing chilling injury and fungal decay were investigated. Tomatoes ( Lycopersicon esculentum cv. Daniella) at the breaker stage were subjected to hot air, 48 h at 38°C, or various hot water dips, 30 min at 40°C or 2 min at 46, 48 or 50°C, before holding at 2°C. The unheated tomatoes developed chilling injury and fungal infections at 2°C, but not at 12°C. All the heat treatments reduced chilling injury and decay in tomatoes held for 3 weeks at 2°C. The outer pericarp tissue of heated tomatoes had higher phospholipid and lower sterol contents than unheated tomatoes. Heated tomatoes also had less saturated fatty acids than unheated tomatoes held at 2°C, but not at 12°C. Scanning electron micrograph observations showed that all the fruits had microcracks in their surface, but the unheated chilled tomatoes had also fungal growth in the cracks, while those of the heated tomato fruit did not. In the areas of chilling injury collapsed cells were present under the peel and could also support pathogen development. It is suggested that the heat treatment institutes a response to high temperature stress in the fruit tissue that leads to strengthened membranes. This prevents the loss of function and cell collapse which was found in the chilling-injured areas of affected fruit.  相似文献   

5.
Long-term chilling of young tomato plants under low light   总被引:8,自引:0,他引:8  
The properties of two Calvin-cycle key enzymes, i.e. stromal fructose-1,6-bisphosphatase (sFBPase) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were studied in the cultivated tomato (Lycopersicon esculentum Mill.) and in four lines of a wild tomato (L. peruvianum Mill.) from different altitudes. During chilling for 14 d at 10°C and low light, the activation energy (EA) of the reaction catalyzed by sFBPase decreased by 5–10 kJ·mol–1 inL. esculentum and the threeL. peruvianum lines from high altitudes. InL. peruvianum, no loss or only small losses of enzyme activity were observed during the chilling. Together with the change in EA, this indicates that the latter species is able to acclimate its Calvin-cycle enzymes to low temperatures. InL. esculentum, the chilling stress resulted in the irreversible loss of 57% of the initial sFBPase activity. Under moderately photoinhibiting chilling conditions for 3 d, theL. peruvianum line from an intermediate altitude showed the largest decreases in both the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and the in-vivo activation state of sFBPase, while the otherL. peruvianum lines showed no inhibition of sFBPase activation. Ribulose-1,5-bisphosphate carboxylase/oxygenase was isolated by differential ammonium-sulfate precipitation and gel filtration and characterized by two-dimensional electrophoresis. The enzyme fromL. esculentum had three isoforms of the small subunit of Rubisco, each with different isoelectric points. Of these, theL. peruvianum enzyme contained only the two more-acidic isoforms. Arrhenius plots of the specific activity of purified Rubisco showed breakpoints at approx. 17°C. Upon chilling, the specific activity of the enzyme fromL. esculentum decreased by 51%, while EA below the breakpoint temperature increased from 129 to 189 kJ·mol–1. In contrast, Rubisco from theL. peruvianum lines from high altitudes was unaffected by chilling. We tested several possibile explanations for Rubisco inactivation, using two-dimensional electrophoresis, analytical ultracentrifugation, gel filtration and inhibitor tests. No indications were found for differential expression of the subunit isoforms, proteolysis, aggregation, subunit disassembly, or inhibitor accumulation in the enzyme from chilledL. esculentum. We suggest that the activity loss in theL. esculentum enzyme upon chilling is the result of a modification of sulfhydryl groups or other sidechains of the protein.Abbreviations a.s.l. above sea level - Chl chlorophyll - DTT dithiothreitol - EA activation energy - FBP fructose-1,6-bisphosphate - Fv/Fm ratio of variable to maximum chlorophyll fluorescence - HL high light (500 mol photons·m–2·s–1) - LSU large subunit of Rubisco - ME 2-mercaptoethanol - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - sFBPase stromal fructose-1,6-bisphosphatase - SSU small subunit of Rubisco  相似文献   

6.
At chilling temperatures, plants suffer damage to photosynthesis. The sites and the mechanisms involved in this damage differ under different chilling conditions. The current status of our understanding of this damage is reviewed, and how chilling temperatures affect photosynthesis is discussed with emphasis on the role of light and the phase separation of membrane lipids. Recipient of the Botanical Society Award for Young Scientist, 1996  相似文献   

7.
To determine the effects of phosphorus nutrition on chilling tolerance of photosynthetic apparatus, tomato (Lycopersicon esculentum Mill. cv. Kenfengxin 2002) plants were raised under different P contents and subjected to 7 d of chilling at 9/7 °C. After chilling (2 h or 7 d) plant growth, P content in tissue, gas exchange and chlorophyll fluorescence were measured. Decreasing P concentration [P] in the nutrient solution markedly reduced plant growth and the chilled plants exhibiting higher optimum [P] than the unchilled plants. Decreasing [P] significantly decreased light saturated net photosynthetic rate (PNsat), maximum carboxylation velocity of Rubisco (Vcmax), maximum potential rate of electron transport contributed to Rubisco regeneration (Jmax), quantum efficiency of photosystem (PS) 2 (ΠPS2) and O2 sensitivity of PNsat (PSO2) and this trend was especially apparent in chilled plants.  相似文献   

8.
The role of photorespiration in the foliar assimilation of nitrate (NO3) and carbon dioxide (CO2) was investigated by measuring net CO2 assimilation, net oxygen (O2) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO2 with ammonium nitrate (NH4NO3) as the nitrogen source, and then exposed to a CO2 concentration of either 360 or 700 µmol mol?1, an O2 concentration of 21 or 2%, and either NO3 or NH4+ as the sole nitrogen source. The elevated CO2 concentration stimulated net CO2 assimilation under 21% O2 for both nitrogen treatments, but not under 2% O2. Under ambient CO2 and O2 conditions (i.e. 360 µmol mol?1 CO2, 21% O2), plants that received NO3 had 11–13% higher rates of net O2 evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH4+. Differences in net O2 evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO2 concentration for the 21% O2 treatment or at either CO2 level for the 2% O2 treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO2 assimilation to net O2 evolution, indicated more NO3 assimilation under ambient CO2 and O2 conditions than under the other treatments. When the AQ was derived from gross O2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short‐term exposure to elevated atmospheric CO2 decreases NO3 assimilation in tomato, and that photorespiration may help to support NO3 assimilation.  相似文献   

9.
10.
Effects of chilling on tomato fruit texture   总被引:1,自引:0,他引:1  
The effects of chilling on tomato ( Lycopersicon esculentum Mill cv. Caruso) texture were investigated using fruit stored at 22°C (nonchilled) or 5°C (chilled) for 28 days. or at 5°C for 15 days before transfer to 22°C to facilitate ripening during and additional 13 days (prechilled). Prechilled fruit exhibited symptoms of slight chilling injury, i.e. development of mealiness, accelerated softening relative to that of nonchilled fruit and nonuniform surface colour development. The firmness of all fruit decreased during ripening and chilled storage when measured by flat plate compression and puncture, especially during the early stages of ripening of nonchilled and prechilled fruit. The compression firmness of pericarp tissue similarly decreased during ripening of nonchilled and prechilled fruit, but was maintained during chilling. Total moisture content (ca 94%) of tissue, uronide content (32-35% w/w) and extracted β-galactosidase activity did not differ significantly ( P > 0.05) among fruit during ripening and chilled storage. The degree of uronide methyl esterification in ethanol-insoluble solids prepared from pericarp tissue (EIS) was relatively low for all fruit. i.e. <40%. EIS from which greater levels of pectinesterase were extracted (i.e. nonchilled>chilled>prechilled) exhibited decreased levels of uronide methyl esterification. Markedly elevated levels of β-glucosidase activity were extracted from prechilled EIS. Total polygalacturonase activity (mainly as PGI) and autolysis of enzyme-extracted EIS were inversely correlated ( P ≤ 0.05) only with the loss of nonchilled fruit and tissue firmness and prechilled fruit firmness. Results suggest a possible role for β-glucosidase in textural changes of prechilled fruit and tissue (e.g. loss of firmness, development of mealiness) and also implicate loss of skin strength in the softening of whole fruit during chilling.  相似文献   

11.
Temperate forests are characterised by variable light quality (i.e. spectral composition of light) at or near the forest floor. These understory environments have a high concentration of green light, as red and blue light are preferentially absorbed by upper canopy leaves. Understory species may be well-adapted for using green light to drive photosynthesis. Angiosperms have been shown to use green light for photosynthesis, but this ability has not been demonstrated in shade-dwelling bryophytes. In this study, net photosynthetic rate (PN) of three temperate understory species of moss (Dichodontium pellucidum (Hedw.) Schimp., Leucobryum albidum (Brid. ex P.Beauv) Lindb. and Amblystegium serpens (Hedw.) Schimp.) was measured under green, red?+?blue, and red?+?blue?+?green light to assess green light use efficiency. All three species were capable of photosynthesising beyond their respiratory demands using solely green light, with higher green light use efficiency measured in plants collected from areas with greater canopy cover, suggesting growth in a green light concentrated environment increases green light use efficiency. Each species was also collected from sites differing in their degree of canopy cover and grown under three light treatments (high light, low light, and green light). Photosynthetic efficiency (chlorophyll fluorescence), tissue nitrogen and carbon isotope concentrations were assessed after a short growth period. Growth conditions had little effect on leaf chemistry and monochromatic green light did not significantly degrade photosynthetic efficiency. This study provides the first evidence to date of positive net ‘green light photosynthesis’ in mosses.  相似文献   

12.
不同光强下高锰对黄瓜光合作用特性的影响   总被引:10,自引:2,他引:10  
采用营养液培养的方法,研究了不同光强下高锰对黄瓜植株生长、叶绿素含量、叶绿素荧光参数和光合作用的影响.结果表明,高锰处理抑制了黄瓜植株的生长,与弱光处理相比强光下抑制幅度更加显著.强光下,高锰处理显著降低叶绿素含量,但降低光强却增加其含量.强光下,高锰处理显著降低原初光能转换效率(Fv/Fm)、光合电子传递量子效率(ΦPSII)和光化学猝灭系数(qP);弱光下,高锰处理对Fv/FmqP无显著影响.高锰处理使净光合速率(Pn)和气孔导度(Gs)下降.尤其是在强光下下降幅度更大.高锰处理使细胞间CO2浓度(Ci)在强光下升高,而在弱光下则下降.与Ci相反,高锰处理使气孔限制值(Ls)在强光下下降,而在弱光下上升.因此,强光下高锰胁迫使净光合速率下降可能是由非气孔限制引起的,而弱光下高锰处理使净光合速率下降可能是由气孔因子限制引起的.  相似文献   

13.
Abstract When tomato plants of the high-altitude species Lycopersicon hirsutum and of the cultivated Lycopersicon esculentum were grown at 24/18°C (day/night), the effects of temperature, photon flux density, and intercellular CO2 concentration up to about 600 μl l?1 on net CO2 uptake were similar in the two species. Acclimation of these plants at 12/6°C (day/night) resulted, after 4 d or longer, in a similar downward shift of about 5°C in the optimum temperature for CO2 uptake. However, in comparison with the cultivated species, the high-altitude plants achieved a higher rate of CO2 uptake at saturating concentrations of intercellular CO2, maintained a higher level of saturating-light CO2 uptake rate at 10°C after exposure to chilling stress (10°C and photon flux density of 400 μmol m?2s?1 d and 5°C night) for 7–18 d, and displayed a better capacity for rapid recovery after prolonged stress. The greater capacity for CO2 uptake observed in the high-altitude species during and after exposure to chilling stress was also reflected in its higher growth rate under those conditions compared with plants of L. esculentum. These advantages of the high-altitude species may partly explain its ability to survive and complete its life cycle under the environmental conditions prevailing in its natural habitat.  相似文献   

14.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

15.
Sulphate accumulates in the rhizosphere of plants grown in hydroponic systems. To avoid such sulphate accumulation and promote the use of environmentally sound hydroponic systems, we examined the effects of four sulphate concentrations (0.1, 5,2, 10.4 and 20.8 m M ) on photosynthesis, ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activities and related physiological processes in greenhouse–grown tomato plants ( Lycopersicon esculentum Mill. cv. Trust). The lowest sulphate concentration (0.1 m M ) significantly decreased photosynthetic capacity (Pc) and Rubisco activities on a leaf area basis. This result was supported by our data for dry matter per plant, which was low for plants in the 0.1 m M treatment. The photosynthesis-related variables such as leaf conductance, chlorophyll and soluble protein were lowest for the 0.1 m M treatment. Both total Rubisco activity and the activated ratio were reduced with this treatment. However, Rubisco activities expressed per g of protein or per g of chlorophyll were not significantly affected. These results suggest that sulphur deficiency depressed Pc– by reducing the amount of both Rubisco and chlorophyll and by causing an inactivation of Rubisco. The ratio of organic sulphur vs organic nitrogen (S/N) in plants of the 0.1 m M treatment was far below the normal values. This low S/N ratio might be accountable for the negative effect of low sulphate on Pc and plant growth. Pc and dry matter were not affected until sulphate concentration in the nutrient solution reached a high level of 20.8 m M .  相似文献   

16.
The inheritance of chilling tolerance in tomato (Lycopersicon spp.)   总被引:2,自引:0,他引:2  
During the past 25 years, chilling tolerance of the cultivated (chilling-sensitive) tomato Lycopersicon esculentum and its wild, chilling-tolerant relatives L. peruvianum and L. hirsutum (and, less intensively studied, L. chilense) has been the object of several investigations. The final aim of these studies can be seen in the increase in chilling tolerance of the cultivated genotypes. In this review, we will focus on low-temperature effects on photosynthesis and the inheritance of these traits to the offspring of various breeding attempts. While crossing L. peruvianum (male symbol) to L. esculentum (female symbol) so far has brought the most detailed insight with respect to physiological questions, for practical purposes, e.g., the readily cross ability, crossing programmes with L. hirsutum as pollen donor at present seem to be a promising way to achieve higher chilling-tolerant genotypes of the cultivated tomato. This perspective is due to the progress that has been made with respect to the genetic basis of chilling tolerance of Lycopersicon spp. over the past five years.  相似文献   

17.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

18.
The response of five Lycopersicon species to 14 days moderate chilling at 10°C under low light (75 μmol m?2 s?1) and subsequent recovery was examined by measurements on relative shoot growth rate, leaf dry matter and carbohydrate content, CO2-exchange and pigment composition. In addition, the susceptibility to dark chilling and temperature dependence of chloroplast electron transport were analyzed by Chl a fluorescence measurements. During 7 days of recovery at 25/20°C subsequent to chilling, the domestic tomato Lycopersiconesculentum (L.) Mill. cv. Abunda exhibited a small capacity for shoot regrowth (39%) compared to the low-altitude wild species L. pimpinellifolium (Jusl.) Mill. PI187002 (82%) and three wild species originating from high altitude: L. peruvianum Mill. LA 385 (92%), L. hirsutum Humb. & Bonpl. LA 1777 (67%) and L. chilense Dunn. LA 1970 (71%). The inter-specific differences in chilling sensitivity at the chloroplast level, analyzed by the decline of the maximum rate of induced Chl fluorescence rise (FR) after 40 h at 0°C and the temperature at which qP reached the value 0.5, correlated in general well with the measured differences at whole plant level, measured by the post-chilling regrowth capacity. Chilling resulted in a larger increase in leaf dry matter content in L. esculentum (45%) and L. pimpinellifolium (37%) compared to the high-altitude species (13–16%), which could be attributed to a stronger accumulation of both soluble sugars and starch in mature leaves of the domestic and low-altitude species. Photosynthetic and dark respiration rates during chilling could not account for this difference. The recovery of photosynthesis was better in the high-altitude species. Chl content per unit leaf area decreased more throughout the experiment in the domestic and low-altitude species (63–73%) than in their relatives from high altitude (8–29%). In response to chilling, the domestic and low-altitude species showed an increase in the total xanthophyll cycle pool on Chl basis, whereas the de-epoxidation state of the xanthophyll cycle increased in the high-altitude wild species. Both responses resulted in increased zeaxanthin levels in chilled leaves of all Lycopersicon species.  相似文献   

19.
Analysis of fast chlorophyll fluorescence rise OJIP was carried out to assess the impact of diuron, paraquat and flazasulfuron on energy fluxes and driving forces for photosynthesis in Lemna minor. Results showed that diuron and paraquat treatment produced major changes in electron transport in active reaction centres (RCs). However, diuron had a more pronounced effect on the yield of electron transport per trapped exciton (ψ0) than on the yield of primary electron transport (φP0)(φP0) showing that dark reactions are more sensitive to diuron than light-dependent reactions. In contrast, paraquat treatment effects were not due to a target-specific action on those dark and light reactions. Paraquat also induced a marked surge in the total absorption of photosystem II (PSII) antenna chlorophyll per active RC displaying a large increase of the dissipation of excess energy through non-photochemical pathways (thermal dissipation processes). Flazasulfuron induced a slight decrease of both the total driving force for photosynthesis and the quantum yield of electron transport beyond QA combined to a small but significant increase of the non-photochemical energy dissipation per RC (DI0/RC). We conclude that energy fluxes and driving force for photosynthesis generate useful information about the behaviour of aquatic plant photosystems helping to localize different target sites and to distinguish heterogeneities inside the PSII complexes. Regardless of the active molecule tested, the DFABS, φE0φE0, DI0/RC and/or ET0/RC parameters indicated a significant variation compared to control while φP0φP0 (FV/FM) showed no significant inhibition suggesting that those parameters are more sensitive for identifying a plant’s energy-use efficiency than the maximum quantum yield of primary PS II photochemistry alone.  相似文献   

20.
弱光下长期亚适温和短期低温对黄瓜生长及光合作用的影响   总被引:22,自引:4,他引:18  
弱光下长期亚适温(T1)和短期低温(T2)对黄瓜幼苗的生长及光合作用有重要影响,表现为生长速度、Pn、CE、AQY、ФPSⅡ等均显著降低,最大光化学效率PsⅡ(Fv/Fm)也有所下降.两个处理相比,T1的Pn、CE、AQY降低幅度较小,但恢复速度慢;而T2降低幅度大,但短期内即可恢复正常.Fv/Fm和ФPSⅡ则是T1降低幅度小且恢复快;而T2降低幅度大,恢复速度也较慢.处理后T1的Chla、Chlb和Car含量均显著增加,而T2的含量则明显降低,T1、T2的Chla/b均显著下降.随着恢复时间的延长,Tl的色素含量多有下降趋势。T2逐渐增加,恢复3d时,含量均高于CK,而Chla/b在恢复期间没有显著变化,仍明显低于CK。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号