首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During mitosis, chromosomes are connected to a microtubule-based spindle. Current models propose that displacement of the spindle poles and/or the activity of kinetochore microtubules generate mechanical forces that segregate sister chromatids. Using laser destruction of the centrosomes during Caenorhabditis elegans mitosis, we show that neither of these mechanisms is necessary to achieve proper chromatid segregation. Our results strongly suggest that an outward force generated by the spindle midzone, independently of centrosomes, is sufficient to segregate chromosomes in mitotic cells. Using mutant and RNAi analysis, we show that the microtubule-bundling protein SPD-1/MAP-65 and BMK-1/kinesin-5 act as a brake opposing the force generated by the spindle midzone. Conversely, we identify a novel role for two microtubule-growth and nucleation agents, Ran and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is continuously required to sustain chromosome segregation during mitosis.  相似文献   

2.
Our interest in the coordination of cell cycle control and differentiation has led us to investigate the Caenorhabditis elegans cye-1 gene encoding the G(1) cell cycle regulator cyclin E. We have studied the expression and function of cye-1 by using monoclonal antibodies directed against CYE-1 protein, cye-1::GFP reporter genes, and a cye-1 chromosomal deletion mutation. We show that a ubiquitous embryonic pattern of expression becomes restricted and dynamic during postembryonic development. Promoter analysis reveals a relatively small region of cis-acting sequences that are necessary for the complex pattern of expression of this gene. Our studies demonstrate that two other G(1) cell cycle genes, encoding cyclin D and CDK4/6, have similarly compact promoter requirements. This suggests that a relatively simple mechanism of regulation may underlie the dynamic developmental patterns of expression exhibited by these three G(1) cell cycle genes. Our analysis of a new cye-1 deletion allele confirms and extends previous studies of two point mutations in the gene.  相似文献   

3.
In Caenorhabditis elegans, cell migration is guided by localized cues, including molecules such as EGL-17/FGF and UNC-6/netrin. These external cues are linked to an intracellular response to migrate, at least in part, by CED-5, a homolog of DOCK180/MBC, and MIG-2, a Rac-like GTPase. In addition, metalloproteases are required for a cell migration that controls organ shape.  相似文献   

4.
We have characterized the organization of the genes coding for 18 S, 5·8 S and 26 S ribosomal RNAs in the nematode Caenorhabditis elegans. These ribosomal genes, present in about 55 copies per haploid genome, alternate in a repeating tandem array. The repeating unit is only 7000 base-pairs, containing a non-transcribed spacer of no more than 1000 base-pairs. Most of the repeating units have identical restriction maps, but one repeat contains a deletion of 2900 base-pairs, which eliminates all or part of the 18 S coding region. We have found no difference in the major ribosomal DNA restriction endonuclease cleavage patterns between two interbreeding strains of C. elegans, but found differences between C. elegans and the closely related Caenorhabditis briggsae.  相似文献   

5.
We are using Caenorhabditis elegans vulval induction to study intercellular signaling and its regulation. Genes required for vulval induction include the LIN-3 transforming α-like growth factor, the LET-23 epidermal growth factor (EGF)-receptor-like transmembrane tyrosine kinase, the SEM-5 adaptor protein, LET-60 Ras, and the LIN-45 Raf serine/threonine kinase. Inactivation of this pathway results in a failure of vulval differentiation, the “vulvaless” phenotype. Activation of this pathway either by overexpression of LIN-3, a point mutation in the LET-23 extracellular domain, or hyperactivity of LET-60 Ras results in excessive vulval differentiation, the “multivulva” phenotype. In addition to searching for new genes that act positively in this signaling pathway, we have also characterized genes that negatively regulate this inductive signaling pathway. We find that such negative regulators are functionally redundant: mutation of only one of these negative regulators has no effect on vulval differentiation; however, if particular combinations of these genes are inactivated, excessive vulval differentiation occurs. The LIN-15 locus encodes two functionally redundant products, LIN-15A and LIN-15B, that formally act upstream of the LET-23 receptor to prevent its activity in the absence of inductive signal. The LIN-15A and B proteins are novel and unrelated to each other. The unc-101, sli-1, and rok-1 genes encode a distinct set of negative regulators of vulval differentiation. The unc-101 gene encodes an adaptin, proposed to be involved in intracellular protein trafficking. The sli-1 gene encodes a protein with similarity to c-cbl, a mammalian proto-oncogene not previously linked with a tyrosine kinase-Ras-mediated signaling pathway. LIN-3 and LET-23 are required for several aspects of C. elegans development—larval viability, P12 neuroectoblast specification, hermaphrodite vulval induction and fertility, and three inductions during male copulatory spicule development. Fertility and vulval differentiation appear to be mediated by distinct parts of the cytoplasmic tail of LET-23, and by distinct signal transduction pathways. © 1995 wiley-Liss, Inc.  相似文献   

6.
7.
Genetic tests for parental effects were performed on 24 temperature-sensitive embryonic-lethal mutants of the nematode Caenorhabditis elegans. For 21 of these mutants, maternal expression of the wild-type allele is sufficient for embryonic survival, regardless of the embryo's genotype. For 11 of these 21 mutants, maternal expression of the wild-type allele is necessary for embryonic survival (strict maternals). For the remaining 10, either maternal or embryonic expression is sufficient for survival (partial maternals). One mutant shows a paternal effect; that is, a wild-type extragenic sperm function appears to rescue homozygous mutant embryos. Similar parental-effect tests were performed on 11 larval-lethal mutants. In 4 mutants, 1 of which blocks as late as the second larval stage after hatching, maternal contributions still can rescue mutant larvae. The remaining 3 embryonic lethals and 8 larval lethals show no parental effects; that is, zygotic expression of the wild-type allele is necessary and sufficient for embryonic survival. Temperatureshift experiments on embryonic-lethal embryos showed that all but 1 of the strict maternal mutants are temperature sensitive only before gastrulation. One of the partial maternal mutants is temperature sensitive prior to gastrulation, suggesting that some zygotic genes can function early in embryogenesis. At the nonpermissive temperature, 7 of the strict maternal mutants either show cleavage abnormalities in early divisions or stop cleavage at less than 100 cells, or both.  相似文献   

8.
Two-dimensional gel electrophoresis has been used to analyze proteins synthesized during postembryonic development of the nematode Caenorhabditis elegans. This organism is favorable for these studies because it has a limited number of cells, it is genetically well-defined, and its development is currently under investigation in several laboratories. 35S-Labeled E. coli was used for continuous and pulse labeling of C. elegans during its four juvenile larval stages and as a gravid adult. After continuous labeling or pulse labeling for 1 hr, 600–800 individual spots can be resolved on a 2D gel using fluorography and 2 weeks of exposure. Proteins that represent 0.0017% of the total sample can be detected. Exposure for 12 weeks reveals only 100 additional spots even though the films are not saturated. It therefore appears that the frequency distribution of proteins decreases significantly beyond these 800 most abundant proteins that can be fractionated on an O'Farrell gel. When the patterns of pulse-labeled proteins of the five developmental stages were compared, 113 proteins could be seen to undergo modulation at one or more of the developmental stages. A maximum number of changes was seen in the transition from the L4 to the adult stages when 11% of the total spots either appeared, disappeared, or changed in intensity. As controls, different preparations of the same developmental stage were compared and revealed considerable fluctuation, 2.6–4.8%. These fluctuations are presumed to be due to variations in growth conditions during culture of the organism. Continuous label experiments reveal a distinct set of proteins that undergo turnover and/or modification during development. Some of these proteins are absent in only one stage, indicating that stable proteins are also modulated. But nearly all of the proteins seen in a continuous label are also seen in a pulse label indicating that most of the major proteins are always present and always synthesized.  相似文献   

9.
Reproducible cell-cell interactions contribute to the invariance of Caenorhabditis elegans development and allow high resolution study of molecular mechanisms of intercellular signaling. A number of new cell interactions have been discovered in the past year. The power of nematode molecular genetics has been increased through several technical advances and the genome project, and these new approaches are now being successfully applied both to familiar and new signaling mechanisms.  相似文献   

10.
The role of cell-cell interaction in the postembryonic development of nongonadal tissues in the nematode Caenorhabditis elegans has been explored by selective cell ablation with a laser microbeam. Examples have been found of induction and of regulation in cell lineage and fate. Regulation in which one cell precisely or partially replaces another is seen, but only in certain groups of hypodermal cells which resemble one another closely; cells which are unique are not replaced in this way. The regulation of cell form is more widespread and less restrictive.  相似文献   

11.
12.
The nudF and nudC genes of the fungus Aspergillus nidulans encode proteins that are members of two evolutionarily conserved families. In A. nidulans these proteins mediate nuclear migration along the hyphae. The human ortholog of nudF is Lis1, a gene essential for neuronal migration in the developing cerebral cortex. The mammalian ortholog of nudC encodes a protein that interacts with Lis1. We have identified orthologs of nudC and Lis1 from the nematode Caenorhabditis elegans. Heterologous expression of the C. elegans nudC ortholog, nud-1, complements the A. nidulans nudC3 mutant, demonstrating evolutionary conservation of function. A C. elegans nud-1::GFP fusion produces sustained fluorescence in sensory neurons and embryos, and transient fluorescence in the gonad, gut, vulva, ventral cord, and hypodermal seam cells. Fusion of GFP to C. elegans lis-1 revealed expression in all major neuronal processes of the animal as well as the multinucleate spermathecal valves and adult seam cells. Phenotypic analysis of either nud-1 and lis-1 by RNA interference yielded similar phenotypes, including embryonic lethality, sterility, altered vulval morphology, and uncoordinated movement. Digital time-lapse video microscopy was used to determine that RNAi-treated embryos exhibited nuclear positioning defects in early embryonic cell division similar to those reported for dynein/dynactin depletion. These results demonstrate that the LIS-1/NUDC-like proteins of C. elegans represent a link between nuclear positioning, cell division, and neuronal function.  相似文献   

13.
Mutations affecting embryonic cell migrations in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Four recessive mutations that affect long-range embryonic migration of the two canal-associated neurons (CANs) in C. elegans were isolated and characterized with the goal of identifying genes involved in control of directed cell movement. Mutant animals were identified initially by their "withered" tails, a phenotype associated with abnormal CAN migration; the mutants were then analyzed for abnormal cell migrations by Nomarski microscopy. Based on genetic complementation tests, the mutations were assigned to four different loci, two new (mig-10 III, mig-11 III) and two previously identified (unc-39 V, vab-8 V). Mutations at all four loci affect CAN migration with high to moderate penetrance (the percentage of mutant animals that exhibit the phenotype). In addition, two other bilaterally symmetric pairs of neurons (ALM and HSN), the mesoblast M, and a pair of coelomocyte mother cells are affected by one or more of the mutations, generally with lower penetrance. With the exceptions of HSN and the right coelomocyte mother cell, which occasionally migrate beyond their normal destinations, the cells affected appear to migrate either incompletely or not at all. All the migration phenotypes show incomplete penetrance and variable expressively, although genetic tests suggest that mutations at mig-10 and vab-8 result in complete or nearly complete loss of gene function. The variability in mutant phenotypes allowed tests for interdependence of several of the affected migrations; all those analyzed appeared independent of one another. The possible nature of the mutant defects and possible roles of these four loci in cell migration are discussed.  相似文献   

14.
Morphogenesis is the process by which multicellular organisms transform themselves from a ball of cells into an organized animal. Certain virtues of Caenorhabditis elegans make it an excellent model system for the study of this process: it is genetically tractable, develops as a transparent embryo with small cell-numbers, and yet still contains all the major tissues typical of animals. Furthermore, certain morphogenetic events are also amenable to study by direct manipulation of the cells involved. Given these advantages, it has been possible to use C. elegans to investigate the different ways in which the actin cytoskeleton drives the cellular rearrangements underlying morphogenesis, through regulated polymerization or actomyosin contraction. Recent insights from this system have determined the involvement in morphogenesis of key proteins, including the actin-regulating WASP and Ena proteins, potential guidance molecules such as the Eph and Robo receptors, and the cell-cell signaling proteins of the Wnt pathway.  相似文献   

15.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.  相似文献   

16.
Eleven temperature-sensitive mutations causing arrest of embryogenesis in Caenorhabditis elegans have been mapped. The mutations define nine genes (emb-1 to emb-9) on four chromosomes. The functions of six genes seem to be required exclusively for embryogenesis. Mutants in these genes have no other detectable phenotype at the permissive (16°C) or nonpermissive (25°C) temperature. The function of the other three genes is also required for postembryonic development. As shown by progeny tests for parental effects, for seven genes, maternal gene expression is necessary and sufficient for normal embryogenesis; for one gene, emb-2, either maternal or zygotic expression is sufficient; for one gene, emb-9, zygotic expression is necessary and sufficient. The high proportion of emb genes with maternal expression is consistent with the model of intracellular preprogramming of the egg of C. elegans (U. Deppe, E. Schierenberg, T. Cole, C. Krieg, D. Schmitt, B. Yoder, and G. von Ehrenstein, 1978; Proc. Nat. Acad. Sci. USA75, 376–380). Two developmental stages have been defined by temperature-shift experiments: (1) the normal execution stage indicating the time of execution of the normal event at the permissive temperature; (2) the defective execution stage indicating the time of the execution of an irreversible defect at the nonpermissive temperature. The classes of mutants defined by the progeny tests have corresponding execution stages, but the maternal necessary and sufficient class is subdivided into mutants executing during oogenesis or embryogenesis.  相似文献   

17.
A wee1 homolog, wee-1.1, is expressed in both a temporally and spatially restricted pattern during early Caenorhabditis elegans embryogenesis, and is undetectable throughout the remainder of embryogenesis. The wee-1.1 message appears to be zygotically expressed in the somatic founder cell E of the 12-cell embryo. This expression disappears when the E blastomere divides for the first time. The wee-1.1 message then appears transiently in the nuclei of the eight great-granddaughter cells of the AB somatic founder cell, just before these cells divide in the 16-cell embryo. Following this division, the wee-1.1 mRNA is no longer detectable throughout the remainder of embryogenesis. The expression of wee-1.1 in the E blastomere and in the AB progeny appears to be restricted to nuclei in prophase and metaphase of the cell cycle. Analysis of the wee-1.1 mRNA expression pattern in maternal-effect lethal mutants suggests that this expression pattern is restricted to cells of the E and AB fates in the early embryo. This mRNA expression pattern is restricted to a 10-15-min span of embryonic development and may be regulating the timing of crucial cell divisions at this early stage of development.  相似文献   

18.
DNA, isolated from age-synchronous senescent populations of Caenorhabditis elegans has been quantitatively and qualitatively analyzed for the presence of 5-methylcytosine. High performance liquid chromatography on two wild-type and several mutant strains of C. elegans failed to detect any 5-methylcytosine. The restriction endonuclease isoschizomers, HpaII and MspI, were used to digest genomic DNA after CsCl purification and failed to detect any 5' cytosine methylation at any age. We conclude that C. elegans does not contain detectable (0.01 mole percent) levels of 5-methylcytosine.  相似文献   

19.
The embryonic cell lineage of Caenorhabditis elegans has been traced from zygote to newly hatched larva, with the result that the entire cell lineage of this organism is now known. During embryogenesis 671 cells are generated; in the hermaphrodite 113 of these (in the male 111) undergo programmed death and the remainder either differentiate terminally or become postembryonic blast cells. The embryonic lineage is highly invariant, as are the fates of the cells to which it gives rise. In spite of the fixed relationship between cell ancestry and cell fate, the correlation between them lacks much obvious pattern. Thus, although most neurons arise from the embryonic ectoderm, some are produced by the mesoderm and a few are sisters to muscles; again, lineal boundaries do not necessarily coincide with functional boundaries. Nevertheless, cell ablation experiments (as well as previous cell isolation experiments) demonstrate substantial cell autonomy in at least some sections of embryogenesis. We conclude that the cell lineage itself, complex as it is, plays an important role in determining cell fate. We discuss the origin of the repeat units (partial segments) in the body wall, the generation of the various orders of symmetry, the analysis of the lineage in terms of sublineages, and evolutionary implications.  相似文献   

20.
In most cells, the DNA damage checkpoint delays cell division when replication is stalled by DNA damage. In early Caenorhabditis elegans embryos, however, the checkpoint responds to developmental signals that control the timing of cell division, and checkpoint activation by nondevelopmental inputs disrupts cell cycle timing and causes embryonic lethality. Given this sensitivity to inappropriate checkpoint activation, we were interested in how embryos respond to DNA damage. We demonstrate that the checkpoint response to DNA damage is actively silenced in embryos but not in the germ line. Silencing requires rad-2, gei-17, and the polh-1 translesion DNA polymerase, which suppress replication fork stalling and thereby eliminate the checkpoint-activating signal. These results explain how checkpoint activation is restricted to developmental signals during embryogenesis and insulated from DNA damage. They also show that checkpoint activation is not an obligatory response to DNA damage and that pathways exist to bypass the checkpoint when survival depends on uninterrupted progression through the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号