首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Baseline function and signal transduction are depressed in hearts with hypertrophic failure. We tested the hypothesis that the effects of cGMP and its interaction with cAMP would be reduced in cardiac myocytes from hypertrophic failing hearts. Ventricular myocytes were isolated from control dogs, dogs with aortic valve stenosis hypertrophy, and dogs with pacing hypertrophic failure. Myocyte function was measured using a video edge detector. Cell contraction data were obtained at baseline, with 8-bromo-cGMP (10(-7), 10(-6), and 10(-5) M), with erythro-9-(2-hydroxy-3-nonyl)adenine [EHNA; a cAMP phosphodiesterase (PDE(2)) inhibitor] plus 8-bromo-cGMP, or milrinone (a PDE(3) inhibitor) plus 8-bromo-cGMP. Baseline percent shortening and maximal rates of shortening (R(max)) and relaxation were slightly reduced in hypertrophic myocytes and were significantly lower in failing myocytes (R(max): control dogs, 95.3 +/- 17.3; hypertrophy dogs, 88.2 +/- 5.5; failure dogs, 53.2 +/- 6.4 mum/s). 8-Bromo-cGMP dose dependently reduced myocyte function in all groups. However, EHNA (10(-6) M) and milrinone (10(-6) M) significantly reduced the negative effects of cGMP on cell contractility in control and hypertrophy but not in failing myocytes (R(max) for control dogs: cGMP, -46%; +EHNA, -21%; +milrinone, -19%; for hypertrophy dogs: cGMP, -40%; +EHNA, -13%; +milrinone, -20%; for failure dogs: cGMP, -40%; +EHNA, -29%; +milrinone, -32%). Both combinations of EHNA-cGMP and milrinone-cGMP significantly increased intracellular cAMP in control, hypertrophic, and failing myocytes. These data indicated that the cGMP signaling pathway was preserved in hypertrophic failing cardiac myocytes. However, the interaction of cGMP with the cAMP signaling pathway was impaired in these failing myocytes.  相似文献   

2.

Background

The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).

Methodology/Principal Findings

In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro.

Conclusions/Significance

Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target.  相似文献   

3.
Increases in the myocardial level of cGMP usually exert negative inotropic effects in the mammalian hearts. We tested the hypothesis that the negative functional effects caused by nitric oxide (NO) or C-type natriuretic peptide (CNP) through cGMP would be blunted in hypertrophied cardiac myocytes. Contractile function, guanylyl cyclase activity, cGMP-dependent protein phosphorylation, and calcium transients were assessed in ventricular myocytes from aortic stenosis-induced hypertrophic and age-matched control mice. Basal percentage shortening was similar in control and hypertrophic myocytes. S-nitroso-N-acetyl-penicillamine (SNAP, an NO donor, 10(-6) and 10(-5) M) or CNP (10(-8) and 10(-7) M) reduced percentage shortening in both groups, but their effects were blunted in hypertrophic myocytes. Maximal rates of shortening and relaxation were depressed at the basal level, and both reagents had attenuated effects in hypertrophy. Similar results were also found after treatment with guanylin and carbon monoxide, other stimulators of particulate, and soluble guanylyl cyclase, respectively. Guanylyl cyclase activity was not significantly changed in hypertrophy. Addition of Rp-8-[(4-chlorophenyl)thio]-cGMPS triethylamine (an inhibitor of cGMP-dependent protein kinase, 5 x 10(-6) M) blocked SNAP or the effect of CNP in control mice but not in hypertrophy, indicating the cGMP-dependent kinase (PKG) may not mediate the actions of cGMP induced by NO or CNP in the hypertrophic state. Calcium transients after SNAP or CNP were not significantly changed in hypertrophy. These results suggest that in hypertrophied mice, diminished effects of NO or CNP on ventricular myocyte contraction are not due to changes in guanylyl cyclase activity. The data also indicated that PKG-mediated pathways were diminished in hypertrophied myocardium, contributing to blunted effects.  相似文献   

4.
Cyclic GMP-selective phosphodiesterase type 5 (PDE5) has been traditionally thought to play a little role in cardiac myocytes, yet recent studies using selective inhibitors such as sildenafil suggest it can potently modulate acute and chronic cardiac stress responses. To date, evidence for myocyte PDE5 expression and regulation has relied on small-molecule inhibitors and anti-sera, leaving open concerns regarding non-specific immune-reactivity, and off-target drug effects. To directly address both issues, we engineered a robust PDE5-gene silencing shRNA (inserted into miRNA-155 cassette) and DsRed–PDE5 fusion protein, both coupled to a CMV promoter and incorporated into adenoviral vectors. PDE5 mRNA and protein knock-down eliminated anti-sera positivity on immunoblots and fluorescent immuno-histochemistry in neonatal and adult cardiomyocytes, and suppressed PDE5 enzyme activity. Stimulation of myocyte hypertrophy by phenylephrine was blunted by PDE5 gene silencing in a protein kinase G dependent manner, and this effect was similar to that from sildenafil with no additive response by both combined. DsRed–PDE5 fusion protein expression showed normal z-band localization in adult myocytes but was diffused in eNOS−/− myocytes; echoing reported findings with anti-sera. PDE5 overexpression increased enzyme activity and amplified natriuretic peptide gene expression from phenylephrine stimulation. These data confirm PDE5 expression, activity, and targeted inhibition by sildenafil in cardiomyocytes, as well as the role of this PDE in cardiomyocyte hypertrophy modulation.  相似文献   

5.
AimsPhosphodiesterases (PDEs) are key enzymes controlling cAMP and cGMP levels and spatial distribution within cardiomyocytes. Despite the clinical importance of several classes of PDE inhibitor there has not been a complete characterization of the PDE profile within the human cardiomyocyte, and no attempt to assess which species might best be used to model this for drug evaluation in heart disease.Main methodsVentricular cardiomyocytes were isolated from failing human hearts of patients with various etiologies of disease, and from rat and guinea pig hearts. Expression of PDE isoforms was determined using RT-PCR. cAMP- and cGMP-PDE hydrolytic activity was determined by scintillation proximity assay, before and after treatment with PDE inhibitors for PDEs 1, 2, 3, 4, 5 and 7. Functional effects of cAMP PDEi were determined on the contraction of single human, rat and guinea pig cardiomyocytes.Key findingsThe presence and activity of PDE5 were confirmed in ventricular cardiomyocytes from failing and hypertrophied human heart, as well as PDE3, with ventricle-specific results for PDE4 and a surprisingly large contribution from PDE1 for hydrolysis of both cAMP and cGMP. The total PDE activity of human cardiomyocytes, and the profile of inhibition by PDE1, 3, 4, and 5 inhibitors, was modelled well in guinea pig but not rat cardiomyocytes.SignificanceOur results provide the first full characterisation of human cardiomyocyte PDE isoforms, and suggest that guinea pig myocytes provide a better model than rat for PDE levels and activity.  相似文献   

6.
We assessed the cellular localization and relative concentration of the C-type natriuretic peptide (CNP) guanylate cyclase-B (GC-B) receptor in the adult rat heart ventricle by several techniques. In frozen sections of the ventricle, anti-receptor antibody stained the vasculature and cells interstitial to myocytes, but not the myocytes themselves. The same antibody detected GC-B in immunoblots of protein extracts of nonmyocytes, but not myocytes and recognized an equivalent protein in extracts of cultured cardiac fibroblasts, but not A7r5 rat smooth muscle cells. In functional assays, CNP-induced cGMP accumulation per milligram cell protein was an order of magnitude greater in cultured cardiac fibroblasts than in A7r5 smooth muscle cells and two orders of magnitude greater than in freshly isolated cardiac myocytes. Modulation of cGMP accumulation by phosphodiesterases (PDEs) was cell specific as determined by antagonist pharmacological profiles, PDE1 in fibroblasts, PDE2 in A7r5 cells, and PDE3 in myocytes, suggesting that significant but low-level cGMP response to CNP measured in heart myocytes is not due to nonmyocyte contamination. Fibroblasts of cardiac origin do not show an interactive relationship between receptor responsiveness to CNP, cGMP levels, and proliferation-related mitogen-activated signal transduction pathways. Whereas previous reports suggest CNP exerts significant effects in neonatal rat cardiomyocytes, our results suggest that fibroblasts are likely the most responsive cell type (cGMP production) in the adult rat heart.  相似文献   

7.
Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes   总被引:1,自引:0,他引:1  
Isoforms in the PDE1 family of cyclic nucleotide phosphodiesterases were recently found to comprise a significant portion of the cGMP-inhibited cAMP hydrolytic activity in human hearts. We examined the expression of PDE1 isoforms in human myocardium, characterized their catalytic activity, and quantified their contribution to cAMP hydrolytic and cGMP hydrolytic activity in subcellular fractions of this tissue. Western blotting with isoform-selective anti-PDE1 monoclonal antibodies showed PDE1C1 to be the principal isoform expressed in human myocardium. Immunohistochemical analysis showed that PDE1C1 is distributed along the Z-lines and M-lines of cardiac myocytes in a striated pattern that differs from that of the other major dual-specificity cyclic nucleotide phosphodiesterase in human myocardium, PDE3A. Most of the PDE1C1 activity was recovered in soluble fractions of human myocardium. It binds both cAMP and cGMP with K(m) values of approximately 1 microm and hydrolyzes both substrates with similar catalytic rates. PDE1C1 activity in subcellular fractions was quantified using a new PDE1-selective inhibitor, IC295. At substrate concentrations of 0.1 microm, PDE1C1 constitutes the great majority of cAMP hydrolytic and cGMP hydrolytic activity in soluble fractions and the majority of cGMP hydrolytic activity in microsomal fractions, whereas PDE3 constitutes the majority of cAMP hydrolytic activity in microsomal fractions. These results indicate that PDE1C1 is expressed at high levels in human cardiac myocytes with an intracellular distribution distinct from that of PDE3A and that it may have a role in the integration of cGMP-, cAMP- and Ca(2+)-mediated signaling in these cells.  相似文献   

8.
Three isoforms of PDE3 (cGMP-inhibited) cyclic nucleotide phosphodiesterase regulate cAMP content in different intracellular compartments of cardiac myocytes in response to different signals. We characterized the catalytic activity and inhibitor sensitivity of these isoforms by using recombinant proteins. We determined their contribution to cAMP hydrolysis in cytosolic and microsomal fractions of human myocardium at 0.1 and 1.0 microm cAMP in the absence and presence of Ca(2+)/calmodulin. We examined the effects of cGMP on cAMP hydrolysis in these fractions. PDE3A-136, PDE3A-118, and PDE3A-94 have similar K(m) and k(cat) values for cAMP and are equal in their sensitivities to inhibition by cGMP and cilostazol. In microsomes, PDE3A-136, PDE3A-118, and PDE3A-94 comprise the majority of cAMP hydrolytic activity under all conditions. In cytosolic fractions, PDE3A-118 and PDE3A-94 comprise >50% of the cAMP hydrolytic activity at 0.1 microm cAMP, in the absence of Ca(2+)/calmodulin. At 1.0 microm cAMP, in the presence of Ca(2+)/calmodulin, activation of Ca(2+)/calmodulin-activated (PDE1) and other non-PDE3 phosphodiesterases reduces their contribution to <20% of cAMP hydrolytic activity. cGMP inhibits cAMP hydrolysis in microsomal fractions by inhibiting PDE3 and in cytosolic fractions by inhibiting both PDE3 and PDE1. These findings indicate that the contribution of PDE3 isoforms to the regulation of cAMP hydrolysis in intracellular compartments of human myocardium and the effects of PDE3 inhibition on cAMP hydrolysis in these compartments are highly dependent on intracellular [Ca(2+)] and [cAMP], which are lower in failing hearts than in normal hearts. cGMP may amplify cAMP-mediated signaling in intracellular compartments of human myocardium by PDE3-dependent and PDE3-independent mechanisms.  相似文献   

9.
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.  相似文献   

10.
Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3',5'-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.  相似文献   

11.
Biochemical studies have established the presence of a NO pathway in the heart, including sources of NO and various effectors. Several cardiac ion channels have been shown to be modified by NO, such as L-type Ca(2+), ATP-sensitive K(+), and pacemaker f-channels. Some of these effects are mediated by cGMP, through the activity of three main proteins: the cGMP-dependent protein kinase (PKG), the cGMP-stimulated phosphodiesterase (PDE2) and the cGMP-inhibited PDE (PDE3). Other effects appear independent of cGMP, as for instance the NO modulation of the ryanodine receptor-Ca(2+) channel. In the case of the cardiac L-type Ca(2+) channel current (I(Ca,L)), both cGMP-dependent and cGMP-independent effects have been reported, with important tissue and species specificity. For instance, in rabbit sinoatrial myocytes, NO inhibits the beta-adrenergic stimulation of I(Ca,L) through activation of PDE2. In cat and human atrial myocytes, NO potentiates the cAMP-dependent stimulation of I(Ca,L) through inhibition of PDE3. In rabbit atrial myocytes, NO enhances I(Ca,L) in a cAMP-independent manner through the activation of PKG. In ventricular myocytes, NO exerts opposite effects on I(Ca,L): an inhibition mediated by PKG in mammalian myocytes but by PDE2 in frog myocytes; a stimulation attributed to PDE3 inhibition in frog ventricular myocytes but to a direct effect of NO in ferret ventricular myocytes. Finally, NO can also regulate cardiac ion channels by a direct action on G-proteins and adenylyl cyclase.  相似文献   

12.
cGMP-specific, cGMP-binding phosphodiesterase (PDE5) regulates such physiological processes as smooth muscle relaxation and neuronal survival. PDE5 contains two N-terminal domains (GAF A and GAF B), but the functional roles of these domains have not been determined. Here we show that recombinant PDE5 is activated directly upon cGMP binding to the GAF A domain, and this effect does not require PDE5 phosphorylation. PDE5 exhibited time- and concentration-dependent reversible activation in response to cGMP, with the highest activation (9- to 11-fold) observed at low substrate concentrations (0.1 micro M cGMP). A monoclonal antibody directed against GAF A blocked cGMP binding, prevented PDE5 activation and decreased basal activity, revealing that PDE5 in its non-activated state has low intrinsic catalytic activity. Activated PDE5 showed higher sensitivity towards sildenafil than non-activated PDE5. The stimulatory effect of cGMP binding on the catalytic activity of PDE5 suggests that this mechanism of enzyme activation may be common among other GAF domain-containing proteins. The data also suggest that development of agonists and antagonists of PDE5 activity based on binding to this site might be possible.  相似文献   

13.
L-Arginine, the sole substrate for the nitric oxide (NO) synthase (NOS) enzyme in producing NO, is also a substrate for arginase. We examined normal feline hearts and hearts with compensated left ventricular (LV) hypertrophy (LVH) produced by ascending aorta banding. Using Western blot analysis, we examined the abundance of arginase isozymes in crude homogenates and isolated cardiac myocytes obtained from the LVs of normal and LVH hearts. We examined the functional significance of myocyte arginase via measurement of shortening and intracellular calcium in isolated myocytes in the presence and absence of boronoethyl chloride (BEC), a specific pharmacological inhibitor of arginase. Both arginase I and II were detected in crude myocardial homogenates, but only arginase I was present in isolated cardiac myocytes. Arginase I was downregulated in LVH compared with normal. Inhibition of arginase with BEC reduced fractional shortening, maximal rate of shortening (+dL/dt) and relengthening (-dL/dt), and the peak of the free cytosolic calcium transient in normal myocytes but did not affect these parameters in LVH myocytes. These negative inotropic actions of arginase inhibition were associated with increases in cGMP generation. These studies indicate that only arginase I is present in cardiac myocytes where it tends to limit NO and cGMP production with the effect of supporting basal contractility. In experimental LVH induced by pressure overload, our studies demonstrate reduced arginase I expression and reduced functional significance, allowing greater arginine substrate availability for NO/cGMP signaling.  相似文献   

14.
cGMP signaling regulates epithelial fluid transport by Drosophila Malpighian (renal) tubules. In order to directly evaluate the importance of cGMP-degrading phosphodiesterases (PDEs) in epithelial transport, bovine PDE5 (a bona fide cGMP-PDE), was ectopically expressed in vivo. Transgenic UAS-PDE5 Drosophila were generated, and PDE5 expression was driven in specified tubule cells in vivo by cell-specific GAL4 drivers. Targeted expression was verified by PCR and Western blotting. Immunolocalization of PDE5 in tubule confirmed specificity of expression and demonstrated localization to the apical plasma membrane. GAL4/UAS-PDE5 tubules exhibit increased cG-PDE activity and reduced basal cGMP levels compared with control lines. We show that wild-type and control tubules are sensitive to the PDE5-specific inhibitor sildenafil and that GAL4/UAS-PDE5 tubules display enhanced sensitivity to sildenafil, compared with controls. cGMP content in GAL4/UAS-PDE5 tubules is restored to control levels by treatment with sildenafil. Thus bovine PDE5 retains cGMP-degrading activity and inhibitor sensitivity when expressed in Drosophila. Expression of PDE5 in tubule principal cells results in an epithelial phenotype, reducing rates of basal and cGMP-/Cardioaccelatory peptide(2b)(CAP(2b))-stimulated fluid transport. Furthermore, inhibition of PDE5 activity by sildenafil restores basal and cGMP-stimulated fluid transport rates to control levels. However, corticotrophin releasing factor-like-stimulated transport, which is activated by cAMP signaling, was unaffected, confirming that only cGMP-stimulated signaling events in tubule are compromised by overexpression of PDE5. Successful ectopic expression of a vertebrate cG-PDE in Drosophila has shown that cG-PDE has a critical role in tubule function in vivo and that cG-PDE function is conserved across evolution. The transgene also provides a generic tool for the analysis of cGMP signaling in Drosophila.  相似文献   

15.
We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and native RyR2 from a number of species was phosphorylated by PKA, indicating that Ser-2030 is a highly conserved PKA site. Furthermore, we found that the phosphorylation of Ser-2030 responded to isoproterenol (isoprenaline) stimulation in rat cardiac myocytes in a concentration- and time-dependent manner, whereas Ser-2808 was already substantially phosphorylated before beta-adrenergic stimulation, and the extent of the increase in Ser-2808 phosphorylation after beta-adrenergic stimulation was much less than that for Ser-2030. Interestingly, the isoproterenol-induced phosphorylation of Ser-2030, but not of Ser-2808, was markedly inhibited by PKI, a specific inhibitor of PKA. The basal phosphorylation of Ser-2808 was also insensitive to PKA inhibition. Moreover, Ser-2808, but not Ser-2030, was stoichiometrically phosphorylated by PKG (protein kinase G). In addition, we found no significant phosphorylation of RyR2 at the Ser-2030 PKA site in failing rat hearts. Importantly, isoproterenol stimulation markedly increased the phosphorylation of Ser-2030, but not of Ser-2808, in failing rat hearts. Taken together, these observations indicate that Ser-2030, but not Ser-2808, is the major PKA phosphorylation site in RyR2 responding to PKA activation upon beta-adrenergic stimulation in both normal and failing hearts, and that RyR2 is not hyperphosphorylated by PKA in heart failure. Our results also suggest that phosphorylation of RyR2 at Ser-2030 may be an important event associated with altered Ca2+ handling and cardiac arrhythmia that is commonly observed in heart failure upon beta-adrenergic stimulation.  相似文献   

16.
Hearts undergoing cardiopulmonary arrest and resuscitation have depressed function and may have changes in signal transduction. We hypothesized that the cyclic GMP (cGMP) signaling pathway would be altered in the post-resuscitation heart. This was studied in ventricular myocytes from 7 anesthetized open-chest rabbits. Cardiopulmonary arrest was achieved for 10 min through ventricular fibrillation and respirator shutdown. After cardiopulmonary arrest, respiration was resumed, the heart was defibrillated, and the heart recovered for 15 min. Seven additional rabbits served as controls. Myocyte function was measured via a video edge detector. Myocytes were treated with 8-bromo-cGMP (10(-5)-10(-6) mol/L) followed by KT5823 (10(-6) mol/L, cGMP protein kinase inhibitor). The baseline percent shortening was significantly depressed in the cardiac arrest myocytes compared with control (3.3 +/- 0.1 vs. 5.5 +/- 0.3%). Treatment with 8-Br-cGMP similarly and dose-dependently reduced cell contraction in both cardiac arrest (-24%) and control (-25%) myocytes. The negative effect of 8-Br-cGMP was partially reversed by KT5823 in control myocytes, but not in the arrest group, indicating reduced involvement of cGMP protein kinase. Multiple proteins were specifically phosphorylated when cGMP was present, but the degree of phosphorylation was significantly less in myocytes after cardiac arrest. The data suggested that the basal contraction was reduced, but the functional response to 8-Br-cGMP was preserved in myocytes from cardiopulmonary arrested hearts. The results also indicated that the action of cGMP appeared to be mainly through non-cGMP protein kinase pathways in the post-resuscitation heart.  相似文献   

17.
Type 1 phosphatase,a negative regulator of cardiac function   总被引:12,自引:0,他引:12       下载免费PDF全文
Increases in type 1 phosphatase (PP1) activity have been observed in end stage human heart failure, but the role of this enzyme in cardiac function is unknown. To elucidate the functional significance of increased PP1 activity, we generated models with (i) overexpression of the catalytic subunit of PP1 in murine hearts and (ii) ablation of the PP1-specific inhibitor. Overexpression of PP1 (threefold) was associated with depressed cardiac function, dilated cardiomyopathy, and premature mortality, consistent with heart failure. Ablation of the inhibitor was associated with moderate increases in PP1 activity (23%) and impaired beta-adrenergic contractile responses. Extension of these findings to human heart failure indicated that the increased PP1 activity may be partially due to dephosphorylation or inactivation of its inhibitor. Indeed, expression of a constitutively active inhibitor was associated with rescue of beta-adrenergic responsiveness in failing human myocytes. Thus, PP1 is an important regulator of cardiac function, and inhibition of its activity may represent a novel therapeutic target in heart failure.  相似文献   

18.
Yin X  Shan Q  Deng C  Bourreau JP 《Life sciences》2002,71(3):287-297
We have examined the effects of the nitric oxide (NO) donor, 3-morpholino-sydnonimine (SIN-1), on Ca(2+) transients, L-type Ca(2+) current (I(Ca,L)), and cGMP/cAMP content in electrically-stimulated rat ventricular myocytes in the absence and presence of the beta-adrenergic stimulation with isoproterenol. SIN-1 had no effect at low concentrations, but decreased the amplitude of electrically-induced Ca(2+) transients at higher concentrations. SIN-1 attenuated the increase in Ca(2+) transients induced by isoproterenol in a concentration-dependent manner. SIN-1 Also reduced the amplitude of caffeine-induced Ca(2+) transients, and the increase in I(Ca,L) induced by isoproterenol. These effects of SIN-1 were associated with an increased cGMP and a decreased cAMP content in ventricular myocytes in either the absence or presence of isoproterenol. These data suggest that the inhibitory effect of SIN-1 on basal and beta-adrenergic stimulated Ca2+ signal in ventricular myocytes could be due to the depression in the SR function and I(Ca,L), possibly mediated by a cGMP/cAMP-dependent mechanism. Taken together, the present study supports the idea that NO acts as an inhibitory modulator of the cardiac function during pathological conditions associated with an abnormal production of NO such as septic shock.  相似文献   

19.
Conflicting reports exist regarding the influence of beta-adrenergic stimulation on the maximum velocity of shortening (Vmax) in ventricular myocytes. This may be due to an unrecognized effect of maturation. In the present study, the effects of beta-adrenergic receptor stimulation on myocytes from hearts of juvenile nonbred and young adult retired breeder female rats were compared. Ventricular myocytes from young adults had a beta-adrenergic-dependent increase in Vmax and Ca2+-dependent actomyosin ATPase that was not observed in myocytes from juveniles. Myocytes from young adults had both an increase in beta-myosin heavy chain (MHC) and higher basal serine/threonine phosphatase activity compared with juvenile rats. Additional studies established moderate increases in beta-MHC induced by hypothyroidism do not confer myocardial beta-adrenergic responsiveness, whereas inhibition of the higher phosphatase activity in myocytes from young adults blocks the age-dependent, beta-adrenergic-induced increase in cross-bridge cycling rates. We propose that the higher phosphatase activity of myocytes from young adults compared with juveniles allows for a greater functional response of the myocardium to beta-adrenergic stimulation.  相似文献   

20.
Phosphodiesterases (PDEs) regulate the local concentration of 3',5' cyclic adenosine monophosphate (cAMP) within cells. cAMP activates the cAMP-dependent protein kinase (PKA). In patients, PDE inhibitors have been linked to heart failure and cardiac arrhythmias, although the mechanisms are not understood. We show that PDE4D gene inactivation in mice results in a progressive cardiomyopathy, accelerated heart failure after myocardial infarction, and cardiac arrhythmias. The phosphodiesterase 4D3 (PDE4D3) was found in the cardiac ryanodine receptor (RyR2)/calcium-release-channel complex (required for excitation-contraction [EC] coupling in heart muscle). PDE4D3 levels in the RyR2 complex were reduced in failing human hearts, contributing to PKA-hyperphosphorylated, "leaky" RyR2 channels that promote cardiac dysfunction and arrhythmias. Cardiac arrhythmias and dysfunction associated with PDE4 inhibition or deficiency were suppressed in mice harboring RyR2 that cannot be PKA phosphorylated. These data suggest that reduced PDE4D activity causes defective RyR2-channel function associated with heart failure and arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号