首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the risk of transmission of mouse minute virus (MMV) to recipients of murine embryos arising from in vitro fertilization (IVF) of oocytes with MMV-exposed spermatozoa and to resulting pups was evaluated. Also, the time of seroconversion of recipients and pups was investigated. To achieve this goal, IVF of oocytes with cryopreserved spermatozoa from the inbred C3HeB/FeJ mouse strain was performed, and the resulting embryos were transferred to suitable Swiss recipients. Three groups were investigated: 1) oocytes or the developing embryos were continuously exposed to 10(4) TCID(50) MMVp per milliliter in the fertilization (human tubal fluid [HTF]), culture (KSOM), and embryo transfer (M2) media (positive control); 2) oocytes and spermatozoa were exposed to MMVp in the HTF medium only and transferred after a standard washing procedure with 10 washing steps in virus-free KSOM and M2; and 3) oocytes and spermatozoa were exposed to virus-free HTF, KSOM, and M2 (negative control). To detect antibodies to MMV in recipients and progeny, serological analyses were performed by ELISA on Days 14, 21, 28, and 42, and on Days 42 and 63, respectively, after embryo transfer. The presence of MMV in the washing drops was analyzed by PCR and an in vitro infectivity assay, while organs of some recipients and pups were analyzed by PCR. Using 10(4) of the tissue culture infective dose of MMVp per millilitre in the fertilization medium only, the present results demonstrate that 10 washing steps in the IVF-ET procedure are sufficient to remove the virus to a noninfectious dose, producing MMV-free seronegative recipients and pups. As such, there is minimal risk of transmission of MMV to recipients and pups if spermatozoa become contaminated with such viral loads.  相似文献   

2.
The aim of this study was to determine the susceptibility of murine embryonic stem (mESCs) to mouse hepatitis virus (MHV-A59) and mouse minute virus (MMVp) and the effect of these viruses on germline transmission (GLT) and the serological status of recipients and pups. When recipients received 10 blastocysts, each injected with 100 TCID50 MHV-A59, three out of five recipients and four out of 14 pups from three litters became seropositive. When blastocysts were injected with 10−5 TCID50 MMVp, all four recipients and 14 pups from four litters remained seronegative. The mESCs replicated MHV-A59 but not MMVp, MHV-A59 being cytolytic for mESCs. Exposure of mESCs to the viruses over four to five passages but not for 6 h affected GLT. Recipients were seropositive for MHV-A59 but not for MMVp when mESCs were cultured with the virus over four or five passages. The data show that GLT is affected by virus-contaminated mESCs.  相似文献   

3.
Susceptibility of pig embryos to porcine circovirus type 2 infection   总被引:1,自引:0,他引:1  
The aim of the present study was to determine if porcine circovirus type 2 (PCV2) is able to infect embryonic cells of in vivo produced porcine embryos with and without zona pellucida (ZP). ZP-intact and ZP-free morulae (6-day post-insemination) and early blastocysts (7-day post-insemination), and hatched blastocysts (8-day post-insemination) were exposed to 10(5.0) TCID50 PCV2 per ml (strain 1121, fifth passage PK15). At 48 h post-incubation, the percentage of infected embryos and the percentage of viral antigen-positive cells per embryo were determined by indirect immunofluorescence (IF). Significantly different percentages of infected embryos were detected: 15% for ZP-free morulae, 50% for ZP-free early blastocysts and 100% for hatched blastocysts. The percentage of cells that expressed viral antigens was similar for the three stages of development. PCV2 exposure did not affect the in vitro development of the embryos during the 48 h study period. All ZP-intact embryos remained negative for viral antigens. In an additional experiment the diameter of the channels in the porcine ZP was determined. After incubation of early blastocysts with fluorescent microspheres of three different sizes, beads with a diameter of 20 nm and beads with a diameter of 26 nm crossed the zona whereas beads with a diameter of 200 nm did not. In conclusion, it can be stated that PCV2 is able to replicate in in vivo produced ZP-free morulae and blastocysts and that the susceptibility increases during development. The ZP forms a barrier to PCV2 infection, but based on the size of the channels in the ZP the possibility that PCV2 particles cross the ZP cannot be excluded.  相似文献   

4.
Pathogenicity of mouse hepatitis virus for preimplantation mouse embryos   总被引:1,自引:0,他引:1  
Mouse embryos which were hatched from the zona pellucida in vitro in the presence of mouse hepatitis virus (MHV) or outgrown on coverslips and then exposed to MHV were shown by immunohistochemical staining to have virally infected trophoblast cells. Zona-intact embryos incubated with MHV for 48 h (2-cell embryos) or 1.5 h (blastocysts) were resistant to infection. Morulae and early blastocysts collected from donor mice experimentally infected with MHV were not infected, but the medium in which they were flushed from the uterine horns was contaminated with virus. No virus was detected after embryos were washed through three changes of uncontaminated medium. MHV was transmitted to foster mothers when embryos were transferred in medium contaminated with the virus. Fetal and decidual tissues were not infected. We suggest that embryo transfer is an effective and simple alternative to Caesarian rederivation of MHV-contaminated mice.  相似文献   

5.
The aim of this study was to estimate the risk of mouse hepatitis virus (MHV) transmission by the in vitro fertilization and embryo transfer (IVF-ET) procedure. In addition, resistance to infection of zona-intact and laser-microdissected oocytes was compared. For this purpose, infectious mouse hepatitis virus, a common viral pathogen in mouse facilities, was used. Oocytes having an intact or laser-microdissected zona pellucida were incubated for fertilization in media containing MHV-A59 and resulting embryos were transferred to the oviduct of specific pathogen-free (SPF) Swiss recipients. The oocytes were divided into three experimental groups: 1) zona-intact oocytes continuously exposed to MHV in fertilization (HTF), culture (KSOM), and embryo transfer (M2) media; 2) zona-intact oocytes exposed to MHV in HTF medium and transferred after a standard washing procedure with virus-free KSOM and M2; and 3) laser-microdissected oocytes exposed to MHV in HTF medium and transferred after a standard washing procedure with virus-free KSOM and M2. Respective serum samples of embryo recipients and their offspring were tested for MHV antibodies using ELISA. In experiment 1, 10 out of 14 embryo recipients seroconverted to MHV and only their offspring (8 of 19) received maternal antibodies. In experiments 2 and 3, MHV antibodies were detected neither in the recipients nor in the offspring. These results indicate, for the first time, that even if the zona pellucida is partially disrupted by laser microdissection, the transmission of MHV-A59 can be avoided by correctly performed washing steps in the IVF-ET procedure.  相似文献   

6.
To provide information on the susceptibility of mouse embryos to Sendai virus, it was investigated if viral replication occurs in the preimplantation embryo at different stages of development, with or without the zona pellucida (ZP). Mice were induced to superovulate, and embryos were collected on Days 2, 3 and 4 after mating. The ZP was removed by digestion with 0.5% pronase. Embryos were exposed to Sendai virus, washed, and allowed to develop in fresh culture medium. The presence of viral antigen in the embryonic cells was examined by the fluorescent antibody test (FAT). Specific immunofluorescence was demonstrated in the ZP-free morula and ZP-intact blastocyst. However, viral antigen was not detected in the ZP-intact two-cell, four-cell, eight-cell or morula stage embryos. Infected embryos developed normally to expanded blastocysts. These findings show that mouse embryonic cells are permissive hosts to Sendai virus replication and that the ZP played the role of a barrier against the virus.  相似文献   

7.
The aim of the present study was to determine if BHV-1 is able to replicate within in vitro produced embryos and to investigate the degree to which the zona pellucida (ZP) is able to protect in vitro produced embryos against infection with BHV-1. Both ZP-intact and ZP-free matured oocytes, zygotes (1 d post insemination; 1dpi), 8-cell stage embryos (3 dpi), morulae (6 dpi) were incubated for 1 h in 1 ml of MEM containing 10(7.7) TCID(50)/ml BHV-1 (Cooper strain). Three titers (10(5.7), 10(6.7) and 10(7.7) TCID(50)/ml) of the Cooper strain were used for incubation of hatched blastocysts (9 dpi). Bovine embryonic lung cells (BEL) on microcarriers were inoculated following the same protocol as for the embryos. At 0, 12, 24, 36 and 48 h post inoculation (hpi), groups of embryos and BEL cells were collected for virus titration and for the determination of the percentage of viral antigen positive cells by immunofluorescence. For the 3 developmental stages in ZP-free embryos, similar maximal intracellular virus progeny titers were obtained at 24 to 48 hpi ranging from 10(1.32) to 10(1.43) TCID(50)/ 100 embryonic cells. The intracellular virus titer in the BEL cells peaked at 10(3.08) TCID(50)/ 100 BEL cells. The percentage of cells which expressed viral antigens was 13% in ZP-free hatched blastocysts, 17% in ZP-free morulae and 100% in BEL cells. In ZP-intact embryos, no replication of BHV-1 was detected. These results clearly show that only after removal of the zona pellucida, BHV-1 is able to replicate within the in vitro produced embryos, with only a subset of embryonic cells being fully susceptible.  相似文献   

8.
The objective was to develop a simpler, more reliable vitrification method for porcine embryos. Prepubertal donor gilts were induced to ovulate with eCG and hCG, and then inseminated artificially. Morulae and expanding blastocysts approximately 200 microm in diameter were collected 6 or 7d after hCG treatment. Embryos collected from donor gilts were maintained, so as to be individually recognizable, and handled in batches of four or five. The embryos together with a minimum volume (<2 microL) of vitrification solution were placed onto stainless steel metal meshes or plastic plates, and then plunged into liquid nitrogen-metal mesh vitrification (MMV) and plastic plate vitrification (PPV), respectively. The meshes or plates were stored in 1.8-mL cryotubes submerged in liquid nitrogen. Stored embryos were subsequently removed, cultured in medium for 24 h, and then assessed for viability. The survival rate (84.4%) of expanding blastocysts cooled by MMV was higher than that (53.1%) of embryos cooled by PPV (P<0.05). There was no significant difference in total cell number between MMV and PPV. The survival rate of morulae cooled by MMV was 55.0%. Transfer of 200 expanding blastocysts cooled by MMV to 10 synchronized recipient gilts resulted in 37 live piglets from 7 recipients. In conclusion, the MMV method was an effective vitrification procedure for cryopreservation of expanding porcine blastocysts. However, there was a batch effect on embryo survival after vitrification.  相似文献   

9.
The aim of the present study was to evaluate the development and ultrastructure of preimplantation bovine embryos that were exposed to bovine viral diarrhea virus (BVDV) in vitro.The embryos were recovered from superovulated and fertilized Holstein-Friesian donor cows on day 6 of the estrous cycle. Compact morulae were microinjected with 20 pl of BVDV suspension (10(5.16) TCID(50)/ml viral stock diluted 1:4) under the zona pellucida (ZP), then washed in SOF medium and cultured for 24-48 h. Embryos were evaluated for developmental stages and then processed immunocytochemically for the presence of viral particles, using fluorescent anti-BVDV-FITC conjugate. Ultrastructure of cellular organelles was analysed by transmission electron microscopy (TEM).After microinjection of BVDV under the ZP, significantly more (p<0.001) embryos (83.33%) were arrested at the morula stage compared with the intact control (30.33%). Immunocytochemical analysis localized the BVDV-FITC signal inside the microinjected embryos. TEM revealed: (i) the presence of virus-like particles in the dilated endoplasmic reticulum and in cytoplasmic vacuoles of the trophoblast and embryoblast cells; (ii) the loss of microarchitecture: and (iii) abnormal disintegrated nuclei, which lacked reticular structure and the heterochromatin area. In all, the embryo nuclear structure was altered and the microarchitecture of the nucleolus had disappeared when compared with the nuclei from control embryos. Dilatation of the intercellular space and the loss of the intercellular gap junctions were often observed in bovine BVDV-exposed embryos.These findings provide evidence for the adverse effect of BVDV virus on the development of bovine embryos, which is related to irreversible changes in the ultrastructure of cell organelles.  相似文献   

10.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

11.
The results of transfer of frozen-thawed caprine embryos that were collected either as blastocysts or morulae and cultured to the blastocyst stage prior to freezing were compared. After thawing, the embryos collected as blastocysts appeared to be of marginally better quality than those that had been cultured from morulae (89 vs 72% rated as good; P > 0.05). The transfer of 24 frozen-thawed embryos collected as blastocysts to 12 recipients resulted in a pregnancy rate of 83% (10/12) and an embryo survival rate of 67%. Corresponding results for frozen-thawed blastocysts that had been cultured from morulae and were transferred to 11 recipients were 54% (6/11) and 41%, respectively. Since an earlier investigation had shown that the transfer of frozen caprine morulae yields very poor results, in our laboratory all morulae are now cultured to the blastocyst stage before being cryopreserved.  相似文献   

12.
The aim of this study was to investigate whether cells of early goat embryos isolated from in vivo-fertilized goats interact with the caprine arthritis-encephalitis virus (CAEV) in vitro and whether the embryonic zona pellucida (ZP) protects early embryo cells from CAEV infection. ZP-free and ZP-intact 8-16 cell embryos were inoculated for 2 h with CAEVat the 10(4) tissue culture infectious dose 50 (TCID50)/ml. Infected embryos were incubated for 72 h over feeder monolayer containing caprine oviduct epithelial cells (COECs) and CAEV indicator goat synovial membrane (GSM) cells. Noninoculated ZP-free and ZP-intact embryos were submitted to similar treatments and used as controls. Six days postinoculation, infectious virus assay of the wash fluids of inoculated early goat embryos showed typical CAEV-induced cytopathic effects (CPE) on indicator GSM monolayers, with fluids of the first two washes only. The mixed cell monolayer (COEC + GSM) used as feeder cells for CAEV inoculated ZP-free embryos showed CPE. In contrast, none of the feeder monolayers, used for culture of CAEV inoculated ZP-intact embryos or the noninoculated controls, developed any CPE. CAEV exposure apparently did not interfere with development of ZP-free embryos in vitro during the 72 h study period when compared with untreated controls (34.6 and 36% blastocysts, respectively, P > 0.05). From these results one can conclude that the transmission of infectious molecularly cloned CAEV-pBSCA (plasmid binding site CAEV) by embryonic cells from in vivo-produced embryos at the 8-16 cell stages is possible with ZP-free embryos. The absence of interactions between ZP-intact embryos and CAEV in vitro suggests that the ZP is an efficient protective embryo barrier.  相似文献   

13.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Studies on the survival of mouse embryos revealed that fewer offspring were produced when blastocysts, rather than morulae, were transferred to foster mothers. Approximately 8–10 h after fertilization F1 hybrid eggs (C57BL/6J × LT/Sv) were collected and cultured to morulae (day 4) or blastocysts (day 5 ) before transfer into uteri of day 3 foster mothers. A few recipients were killed on day 8 of gestation and deciduae were examined histologically. Embryos developing from transferred morulae were found to lie deep within the deciduae and were surrounded by numerous, large blood islands. Conversely, embryos developing from transferred blastocysts implanted more distally to the maternal blood vessels with only a few blood islands surrounding the embryos. These observations, suggesting abnormal implantation with insufficient embyro nourishment, were confirmed when uteri of foster mothers were examined on day 19 of gestation. Although the proportion of implantations from transferred morulae or blastocysts was similar (42 % and 47%, respectively), significantly more of the implantations were resorbed after transfer of blastocysts (78%) as compared with morulae (15%). These results demonstrate that transfer of day 5 cultured blastocysts into uteri of foster mothers increases embryonic mortality as a consequence of improper implantation.  相似文献   

15.
The objective was to assess the potential of Day-7, IVP zona pellucida-intact blastocysts to transmit bovine viral diarrhea virus (BVDV) to embryo recipients. Embryos were exposed (1h) to two non-cytopathic (NCP) biotypes, either NY-1 (type 1) or two concentrations of PA-131 (type 2), washed 10 times, and transferred into recipients (two embryos/recipient) free of BVDV and its antibody. Six (30.0%) of the 20 pregnancies were lost after 30 d following transfer of the embryos exposed to the type 1 strain; none of the recipients or their 18 full term offspring seroconverted. Conversely, following exposure to the type 2 strain, 16 (51.6%) of the 31 pregnancies were lost >30 d after embryo transfer. Furthermore, 18 (51.4%) of 35 recipients receiving embryos exposed to type 2 seroconverted; 11 of those were pregnant at 30 d, but only 2 went to full term and gave birth to noninfected (seronegative) calves. Virus isolation tests were performed on single, virus-exposed, washed embryos (not transferred); 3 of 12 (25%) and 17 of 61 (28%) exposed to type 1 and type 2, respectively, were positive for live BVDV. Embryos exposed to type 2 virus had from 0 to 34 viral copies. In conclusion, a large proportion of recipients that received embryos exposed to BVDV, especially those exposed to a high concentration of type 2 virus, became infected after ET, and their pregnancies failed. However, term pregnancies resulted in calves free of both virus and antibody. Therefore, additional disinfection procedures are recommended prior to transferring potentially infected IVP embryos.  相似文献   

16.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

17.
The aim of our study was to examine whether: (1) the exposure of bovine embryos to the BHV-1 virus in vitro can compromise their further development and alter the ultrastructural morphology of cellular organelles; (2) whether the zona pellucida (ZP) can be a barrier protecting embryos against infection; and (3) whether washing with trypsin after viral exposure can prevent virus penetration inside the embryo and subsequent virus-induced damages. The embryos were recovered from superovulated Holstein-Friesian donor cows on day 6 of the estrous cycle. Only compact morulas or early blastocysts were selected for experiments with virus incubation. We used the embryos either with intact ZP (either with or without trypsin washing) or embryos in which the ZP barrier was avoided by using the microinjection of a BHV-1 suspension under the ZP. ZP-intact embryos (n = 153) were exposed to BHV-1 at 10(6.16) TCID(50)/ml for 60 min, then washed in trypsin according to IETS guidelines and postincubated in synthetic oviduct fluid (SOF) medium for 48 h. Some of the embryos (n = 36) were microinjected with 20 pl of BHV-1 suspension under the ZP, the embryos were washed in SOF medium and cultured for 48 h. Embryo development was evaluated by morphological inspection, the presence of viral particles was determined both immunocytochemically, using fluorescent anti-IBR-FITC conjugate and by transmission electron microscopy (TEM) on the basis of the ultrastructure of the cellular organelles. It was found that BHV-1 exposure impairs embryo development to higher preimplantation stages independent of the presence of the ZP or the trypsin treatment step, as most of the embryos were arrested at the morula stage when compared with the control. Immunofluorescence analysis confirmed the presence of BHV-1 particles in about 75% of embryos that were passed through the trypsin treatment and in all the BHV-1-microinjected embryos. Ultrastructural analysis, using TEM, revealed the presence of virus-like particles inside the BHV-1-exposed embryos, where the trypsin washing step was omitted. Conversely, in trypsin-treated BHV-1-exposed embryos, TEM detected only the envelope-free virus-like particles adhered to pores of the ZP. The embryos that were microinjected with BHV-1 suspension showed the presence of BHV-1 particles, as well as ultrastructural alterations in cell organelles. Taken together these findings may suggest that BHV-1 infection compromises preimplantation development of bovine embryos in vitro and therefore the ZP may not be enough on its own to prevent virus-induced damage, unless it is not accompanied with trypsin washing.  相似文献   

18.
A new nonsurgical embryo transfer technique was used in the mouse that yielded survival rates of between 40 and 70% depending on embryo stage and, possibly, on the degree of synchrony between the embryo and recipient. Three variables were tested using this embryo transfer technique: a) pseudopregnant recipients vs pregnant but genetically semi-sterile recipients, b) embryos resulting from superovulation vs embryos from natural ovulation, and c) 12-hour vs 24-hour asynchrony between donors and recipients. None of these variables significantly affected the pregnancy rate or the percentage of transferred embryos developing to term. The pregnancy rates were between 77 and 90% in 6 experimental groups of 8 to 13 females. Survival rates were between 41 and 63% when all recipients were considered and between 53 and 68% when only the pregnant recipients were included. The embryo transfer procedure influenced litter size composition of the endogenous conceptuses of the semi-sterile recipients. Too many females were devoid of these. Recipients of expanded blastocysts had significantly better transfer results than recipients that also received morulae and early blastocysts. It was concluded that the transfer success rates were influenced by the recipients and possibly by their preparation for transfer.  相似文献   

19.
The effect of high concentrations of cryoprotectants on the passage of bovine viral diarrhea virus (BVDV) through the zona pellucida (ZP) of intact bovine embryos during the pre-freezing step of cryopreservation was investigated in a series of experiments. In vitro fertilized (IVF) embryos at the blastocyst stage were exposed to 10(6) TCID50 BVDV (non-cytopathic NY-1 strain) in a 30% suspension of either ethylene glycol, glycerol, DMSO, or 2 M sucrose in physiological saline for 10 min at 20 degrees C. Subsequently, the embryos were washed free of residual unbound viral particles, and the ZP of some embryos were removed by micromanipulation. Groups of ZP-intact embryos, ZP-free embryonic cells and their respective ZP were then tested separately for the presence of virus. The infectious virus was detected in association with 81% (17/21) of samples containing non-micromanipulated ZP-intact embryos which were exposed to the virus and cryoprotectants and then washed 10 times and in 83% (43/53) of the samples containing only ZP from micromanipulated embryos (P > 0.05). The virus was not found in the samples containing the corresponding embryonic cells of embryos exposed previously to the virus and cryoprotectants. It was concluded that the transfer of embryos from the isotonic PBS solution into a highly hypertonic cryoprotectant solution did not cause the passage of BVDV through ZP and its entry to embryonic cells.  相似文献   

20.
Embryos vitrified by the open-pulled-straw (OPS) method are only briefly exposed to cryoprotectants and not fully equilibrated with the cryoprotectant. That being the case, conceivably the post-thawing de- and rehydration processes may be omitted. This would render thawing and dilution in a single step and direct transfer to recipients possible without the need for a microscope and other laboratory equipment. Morphologically intact mouse blastocysts from superovulated 5- to 8-week-old virgin female NMRI mice were vitrified according to a protocol [6] slightly modified from the classical OPS-procedure of Vajta et al. [29] consisting of exposure to 10% dimethyl-sulfoxide (Me2SO) + 10% ethylene glycol (EG) for 1 min, followed by 20% Me2SO + 20% EG for 20 s before loading into straws that are plunged into liquid nitrogen. In Group 1, 75 blastocysts were exposed to the standard thawing and dilution regimen involving exposure to three solutions of decreasing sucrose content (Control). In Groups 2, 3 and 4, 75 blastocysts each were transferred, in a single step, to medium at 37 °C containing 0.66, 0.33 or 0 M sucrose, respectively. After 48 h of in vitro culture the proportion of hatched blastocysts was determined. In Group 1, this proportion amounted to 82.7%, in Groups 2, 3 and 4 to 76.0%, 73.3% and 78.7%, respectively (P > 0.05). To examine their potential to continue development in vivo, OPS-vitrified blastocysts thawed according to the regimens of Groups 1 and 4 were transferred to recipients (10 embryos/recipient). In Group 1, 9/10 recipients got pregnant with 4.7 ± 0.6 (mean ± SEM) fetuses, in Group 4, 8/10 recipients with 5.0 ± 0.5 fetuses. The overall embryo survival rate per group was 42% for Group 1 and 40% for Group 4. All fetuses were normally developed and viable and there were no significant differences between groups (P > 0.05). It may be concluded that warming and transfer of OPS-vitrified mouse embryos in a single step in medium devoid of sucrose is feasible, which is tantamount to a substantial simplification of embryo transfer operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号