首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Regulation of Na,K-ATPase mRNA isoform and mRNA expression by thyroid hormone (T3) in neonatal rat myocardium was examined. In euthyroid neonates between ages of 2 and 5 days, mRNA1, mRNA3, and mRNA1 abundances were nearly constant while mRNA2 was undetectable. During the interval between postnatal days 5 and 15, mRNA3 decreased to negligible levels and mRNA2 became expressed and increased in abundance to account for 20% of the mRNA pool by the 15th postnatal day. To examine the effect of T3 on this developmental program, neonates were injected with 75 g T3/100 g body weight or diluent alone on the second and third postnatal days and myocardial Na,K-ATPase subunit-mRNA abundances were determined on the third and fourth postnatal days. Because T3 treatment increased the RNA/DNA ratios of myocardial tissue, the subunit-mRNA abundances were normalized per unit DNA. Following 24 and 48 hr of T3 treatment, the abundances of mRNA1, mRNA3, and mRNA1 increased, while mRNA2 continued to remain undetectable during the 2-day interval between the second to fourth postnatal days. It is concluded that T3 augments the abundance of Na,K-ATPase subunit mRNAs that are already being expressed in the neonatal rat myocardium. The results further suggest that T3 does not act as a molecular switch in the developmental expression of the mRNA isoforms in rat myocardium during the first four postnatal days.  相似文献   

2.
A study was made of effects of aldosterone, aldosterone+dexamethasone, and aldosterone+spironolactone on Na,K-ATPase mRNA expression in renal cortex of adult and 10 day old rats, when kidney is not sensitive to the hormone injection. It is shown that hormonal induction of synthesis of Na,K-pump mRNA occurs in the early postnatal period apart from mineral corticoid receptors. It seems probable that aldosterone exerts its action in 10 day old rats by interaction with glucocorticoid receptors inducing synthesis of different amounts of alpha- and beta-subunits of Na,K-ATPase.  相似文献   

3.
Role and regulation of lung Na,K-ATPase.   总被引:2,自引:0,他引:2  
The recognition that pulmonary edema is cleared from the alveolar airspace by active Na+ transport has led to studies of the role and regulation of alveolar epithelial Na,K-ATPases. In the lung these heterodimers are predominantly composed of alpha1 and beta1-subunits and are located on the basolateral aspect of alveolar type 2 epithelial cells (AT2). Working with apically positioned epithelial Na+ channels they generate a transepithelial osmotic gradient which causes the movement of fluid out of the alveolar airspace. Accumulating data indicates that in some forms of pulmonary edema alveolar Na,K-ATPases function is reduced suggesting that pulmonary edema may be due, in part, to impairment of edema clearance mechanisms. Other studies suggest that Na,K-ATPase dysfunction or inhibition may contribute to airway reactivity. It is now recognized that lung Na,K-ATPases are positively regulated by glucocorticoids, aldosterone, catecholamines and growth hormones. These findings have led to investigations that show that enhancement of Na,K-ATPase function can accelerate pulmonary edema clearance in vitro, in normal and injured animal lungs in vivo, and in human lung explants. This review focuses on Na,K-ATPase data from lung and lung cell experiments that highlight the importance of Na,K-ATPases in airway reactivity and in maintaining a dry alveolar airspace. Review of data that suggests that there may be a role for therapeutic modulation of alveolar Na,K-ATPases for the purpose of treating patients with respiratory failure are also included.  相似文献   

4.
Gaps in our understanding of the complex regulated expression of isozymes of Na,K-ATPase and the diverse systems for posttranslational modification and short term regulation of active Na,K-transport in animals and humans are the main problems in comprehensive Na,K-pump physiology. In mammalian genomes, the genes of four alpha-subunit and at least three beta-subunit isoforms of Na,K-ATPase are identified and two gamma-subunits are expressed in kidney. The isoforms combine in a number of Na,K-ATPase isozymes that are expressed in a tissue and cell specific manner. Models of the molecular mechanism of regulation of these isozymes have become more reliable due to progress in understanding the three-dimensional protein structure and conformational transitions mediating transfer of energy from the P-domain to intramembrane Na+ and K+ binding sites.  相似文献   

5.
Sodium and potassium-exchanging adenosine triphosphatase (Na,K-ATPase) in the kidney is associated with the gamma subunit (gamma, FXYD2), a single-span membrane protein that modulates ATPase properties. Rat and human gamma occur in two splice variants, gamma(a) and gamma(b), with different N termini. Here we investigated their structural heterogeneity and functional effects on Na,K-ATPase properties. Both forms were post-translationally modified during in vitro translation with microsomes, indicating that there are four possible forms of gamma. Site-directed mutagenesis revealed Thr(2) and Ser(5) as potential sites for post-translational modification. Similar modification can occur in cells, with consequences for Na,K-ATPase properties. We showed previously that stable transfection of gamma(a) into NRK-52E cells resulted in reduction of apparent affinities for Na(+) and K(+). Individual clones differed in gamma post-translational modification, however, and the effect on Na(+) affinity was absent in clones with full modification. Here, transfection of gamma(b) also resulted in clones with or without post-translational modification. Both groups showed a reduction in Na(+) affinity, but modification was required for the effect on K(+) affinity. There were minor increases in ATP affinity. The physiological importance of the reduction in Na(+) affinity was shown by the slower growth of gamma(a), gamma(b), and gamma(b') transfectants in culture. The differential influence of the four structural variants of gamma on affinities of the Na,K-ATPase for Na(+) and K(+), together with our previous finding of different distributions of gamma(a) and gamma(b) along the rat nephron, suggests a highly specific mode of regulation of sodium pump properties in kidney.  相似文献   

6.
The murine renal Na,K-ATPase is resistant to cardiac glycosides. It is not yet known however whether altered active transport is associated with the drug-resistance. To investigate this problem Na,K-ATPases were purified from the outer medulla of both rat and rabbit kidneys and reconstituted identically into liposomes. The Na-stimulation of the Na,K-ATPase activity before reconstitution and of the Na-transport after reconstitution was measured. A Na-defect inherent in the ouabain-resistant rat Na,K-ATPase was discovered indicating a link between the cardiac glycoside sensitivity and the Na-transport.  相似文献   

7.
8.
9.
The mechanism of functioning of Na, K-ATPase system is considered, the peculiarities of hydrolysis in different substrates are described. The experimental results testify to the role of substrate structure in E2----E1-transition, Na+ transport, K(+)-dependent phosphatase activity and quaternary structure of enzyme. The regulatory role of molecular organization of Na, K-ATPase in ion transport is discussed.  相似文献   

10.
Factors regulating the activity of synaptosomal Na, K-ATPase have been found in the cytosol of nerve endings. The activatory effect of the factor increases in the presence of neurotransmitters regardless of their direct action on Na, K-ATPase. Synaptosomal Na, K-ATPase is not sensitive to the factor obtained from the cytosol of kidney tissue, or the cytosolic fraction obtained after sedimentation of microsomes. The effect of inhibiting low molecular ET(S) fraction on Na, K-ATPase activity is not mediated through noradrenaline, dopamine and serotonin as well by the system of secondary messengers. Factor stimulated by neurotransmitters activates the Na, K-ATPase system affecting the phosphorylating intermediates of the enzyme and putting the Na, K-ATPase system in the mode of simultaneous transport of Na and K ions.  相似文献   

11.
Androgen-dependent synthesis of alpha 2u globulin in the rat liver has been used in our laboratory as a model for studying the effect of sex hormones on hepatic gene expression. alpha 2u Globulin is a group of low molecular weight (Mr approximately 18,000) male specific urinary proteins synthesized and secreted by hepatocytes. In the male rat hepatic synthesis of alpha 2u globulin begins at puberty (approximately 40 days), reaches a peak level (approximately 20 mg/day) at about 75 days and declines during old age. Androgens can induce alpha 2u globulin in ovariectomized female rats in vivo and in the liver perfusion system in vitro. However, both prepubertal and senescent (greater than 800 days) male rats not only do not produce alpha 2u globulin but are also refractory to androgen administration. alpha 2u Globulin is coded by a multigene family comprising about 20-30 gene copies per haploid genome. All of these gene copies seem to express translationally active mRNAs giving rise to individual isoforms of alpha 2u globulin. Appearance and disappearance of the cytoplasmic androgen-binding protein (CAB) correlates with the androgen responsiveness of hepatocytes. Photoaffinity labeling of the hepatic cytosol shows that the biologically active binding protein, found in the cytosol of the mature male rat liver, has a molecular weight of 31 kDa. A molecular transition of the 31-kDa CAB to a biologically inactive 29-kDa form may be the basis of hepatic androgen insensitivity during prepuberty and senescence.  相似文献   

12.
13.
Na,K-ATPase: Isoform structure,function, and expression   总被引:6,自引:0,他引:6  
An interesting feature of the Na,K-ATPase is the multiplicity of and isoforms. Three isoforms exist for the subunit, 1, 2, and 3, as well for the subunit, 1, 2, and 3. The functional significance of these isoforms is unknown, but they are expressed in a tissue- and developmental-specific manner. For example, all three isoforms of the subunit are present in the brain, while only 1 is present in kidney and lung, and 2 represents the major isoform in skeletal muscle. Therefore, it is possible that each of these isoforms confers different properties on the Na,K-ATPase which allows effective coupling to the physiological process for which it provides energy in the form of an ion gradient. It is also possible that the multiple isoforms are the result of gene triplication and that each isoform exhibits similar enzymatic properties. In this case, the expression of the triplicated genes would be individually regulated to provide the appropriate amount of Na,K-ATPase to the particular tissue and at specific times of development. While differences are observed in such parameters as Na+ affinity and sensitivity to cardiac glycosides, it is not known if these properties play a functional role within the cell.Site-directed mutagenesis has identified amino acid residues in the first extracellular region of the subunit as major determinants in the differential sensitivity to cardiac glycosides. Similar studies have failed to identify residues in the second extracellular region involved in cardiac glycoside inhibition. Further analysis of the enzymatic properties of the enzyme, understanding the regulated expression of the genes, and structure-function studies utilizing site-directed mutagenesis should provide new insights into the enzymatic and physiological roles of the various subunit isoforms of the Na,K-ATPase.  相似文献   

14.
15.
In contrast to the purified enzyme. Na, K-ATPase from intact synaptic membranes is inhibited by Ca2+ according to a biphase pattern at Ca2+ concentrations of 10(-6) to 10(-3) M. The membrane damage after three washings with bidistilled water results in elimination of low cocentration phase. Recombination of the sediment and the supernatant restores the initial shape of the inhibition curve. Dithiothreitol greatly increases the inhibition by low Ca concentrations. This effect is absent in the purified enzyme preparation and is considerably reduced after the membrane damage. Recombination restores the dithiothreitol effect. It is suggested that the sensitivity of membrane Na,K-ATPase to low concentrations of Ca2+ is controlled by the components (most likely, peripheral proteins), which are loosely bound to the membrane, this process being dependent on the degree of the SH-group reduction.  相似文献   

16.
The medullary thick ascending limb (MTAL) of the kidney displays structural changes during long term diabetes. After twelve weeks of diabetes, there is controversy over the changes in Na,K-ATPase activity. To observe the long-term changes, we studied MTAL Na,K-ATPase activity and protein expression in diabetic animals 6 (6W) and 12 weeks (12W) after induction of diabetes with streptozotocin. Three groups were studied, one control group, one group 6W after, and one group 12W after induction of diabetes. Membrane fractions from the inner strip of the outer medulla representing MTAL were isolated. Na,K-ATPase activity and western blottings of alpha1- and beta1-subunits were carried out. 6W diabetes resulted in an increase, and 12W in a decrease in the MTAL Na,K-ATPase activity versus the control group (respectively 63.3 +/- 21.2; 7.5 +/- 2.4 and 31.6 +/- 11.4; micromol Pi/mg prot/hr +/- SEM). The Na,K-ATPase subunit expression was increased at 6W, and decreased after 12W, resulting in amounts below control values for both alpha1- and beta1-subunits. Our results confirm a diabetes-induced biphasic time-dependent alteration MTAL Na,K-ATPase activity, supported by similar changes in alpha1 and beta1 Na,K-ATPase subunits-expression.  相似文献   

17.
18.
The change of blood pressure and the induction of Na, K-ATPase alpha 1-subunit mRNA have been investigated in the renal cortex of aldosterone-treated hypertensive rat. The increase of blood pressure by aldosterone-treatment for 25 days was decreased by the treatment of amiloride or spironolactone. The level of Na, K-ATPase alpha 1-subunit mRNA of the renal cortex in aldosterone-treated rat was increased than that in the control, and its increase was repressed by treatment of spironolactone, but not altered by the treatment of amiloride. This result suggests that the increase of Na, K-ATPase alpha 1-subunit mRNA in the renal cortex of aldosterone-treated hypertensive rat may be related with the direct induction of Na, K-ATPase mRNA without the increase of Na-traffic through Na-channel.  相似文献   

19.
Summary Na, K-ATPase function was studied in order to evaluate the mechanism of increased colonic Na+ transport during early postnatal development. The maximum Na+-pumping activity that was represented by the equivalent short-circuit current after addition of nystatin (I sc N ) did not change during postnatal life or after adrenalectomy performed in 16-day-old rats.I sc N was entirely inhibited by ouabain; the inhibitory constant was 0.1mm in 10-day-old (young) and 0.4mm in 90-day-old (adult) rats. The affinity of the Na, K pump for Na+ was higher in young (11mm) than in adult animals (19mm). The Na, K-ATPase activity (measured after unmasking of latent activity by treatment with sodium dodecylsulfate) increased during development and was also not influenced by adrenalectomy of 16-day-old rats. The inhibitory constant for ouabain (K I ) was not changed during development (0.1–0.3mm). Specific [3H]ouabain binding to isolated colonocytes increased during development (19 and 82 pmol/mg protein), the dissociation constant (K D ) was 8 and 21 m in young and adult rats, respectively. The Na+ turnover rate per single Na, K pump, which was calculated fromI sc N and estimated density of binding sites per cm2 of tissue was 500 in adult and 6400 Na+/min·site in young rats. These data indicate that the very high Na+ transport during early postnatal life reflects an elevated turnover rate and increased affinity for Na+ of a single isoform of the Na, K pump. The development of Na+ extrusion across the basolateral membrane is not directly regulated by corticosteroids.  相似文献   

20.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号