首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X-linked liver glycogenosis (XLG) is a glycogenosis due to deficient activity of phosphorylase kinase (PHK) in liver. PHK consists of four different subunits, alpha, beta, gamma, and delta. Although it is unknown whether liver and muscle PHK subunits are encoded by the same genes, the muscle alpha subunit (PHKA) gene was a likely candidate gene for the mutation responsible for this X-linked liver glycogenosis as it was assigned to the X chromosome at q12-q13. Linkage analysis with X-chromosomal polymorphic DNA markers was performed in two families segregating XLG. First, multipoint linkage analysis excluded the muscle PHKA region as the site of the XLG mutation. Second, evidence was obtained for linkage between the XLG locus and DXS197, DXS43, DXS16, and DXS9 with two-point peak lod scores Zmax = 6.64, 3.75, 1.30, and 0.88, all at theta max = 0.00, respectively. Multipoint linkage results and analysis of recombinational events indicated that the mutation responsible for XLG is located in Xp22 between DXS143 and DXS41.  相似文献   

2.
X-linked liver glycogenosis (XLG) is a glycogen storage disorder resulting from deficient activity of phosphorylase kinase (PHK). PHK consists of four different subunits: alpha, beta, gamma, and delta. Several genes encoding PHK subunits have been cloned and localized, but only the muscle alpha-subunit (PHKA) gene has been assigned to the X chromosome, in the region Xq12----q13. However, we have previously excluded the muscle PHKA gene as a candidate gene for the XLG mutation, as linkage analysis indicated that the mutation responsible for XLG is located in Xp22 and not in Xq12----q13. We report here the chromosomal localization by in situ hybridization of a liver PHKA gene to the distal region of chromosome Xp. Strong hybridization signals were observed on the distal part of the short arm of a chromosome identified as the X chromosome by cohybridization with an X chromosome-specific centromeric probe. The localization of this gene in the same chromosomal region as the disease gene responsible for XLG suggests that the liver PHKA gene is a highly likely candidate gene for the XLG mutation.  相似文献   

3.
X-linked liver glycogenosis (XLG) resulting from phosphorylase kinase (Phk) deficiency is one of the most common forms of glycogen storage disease. It is caused by mutations in the gene encoding the liver isoform of the Phk α subunit (PHKA2). In the present study, we address the issue of phenotypic and allelic heterogeneity in XLG. We have identified mutations in seven male patients. One of these patients represents the variant biochemical phenotype, XLG subtype 2 (XLG2), where Phk activity is low in liver but normal or even elevated in erythrocytes. He carries a K189E missense mutation, which adds to the emerging evidence that XLG2 is associated with missense mutations clustering at a few sites. Two patients display clinical phenotypes unusual for liver Phk deficiency, with dysfunction of the kidneys (proximal renal tubular acidosis) or of the nervous system (seizures, delayed cognitive and speech abilities, peripheral sensory neuropathy), respectively, in addition to liver glycogenosis. In the patient with kidney involvement, we have identified a missense mutation (P399S) and a trinucleotide deletion (2858del3) leading to the replacement of two amino acids by one new residue (N953/L954I), and a missense mutation has also been found in the patient with neurological symptoms (G1207W). These two cases demonstrate that PHKA2 mutations can also be associated with uncommon clinical phenotypes. Finally, in four typical XLG cases, we have identified three truncating mutations (70insT, R352X, 567del22) and an in-frame deletion of eight well-conserved amino acids (2452del24). Together, this study adds eight new mutations to the previously known complement of sixteen PHKA2 mutations. All known PHKA2 mutations but one are distinct, indicating pronounced allelic heterogeneity of X-linked liver glycogenosis with mutations in the PHKA2 gene. Received: 17 October 1997 / Accepted: 23 December 1997  相似文献   

4.
We describe here a new type of X-linked liver glycogen storage disease. The main symptoms include liver enlargement and growth retardation. The clinical and biochemical abnormalities of this glycogenosis are similar to those of classical X-linked liver glycogenosis due to phosphorylase kinase deficiency (XLG). However, in contrast to patients with XLG, the patients described here have no reduced phosphorylase kinase activity in erythrocytes and leukocytes, and no enzyme deficiency could be found. Linkage analysis of four families with this X-linked type of liver glycogenosis assigned the disease gene to Xp22. Lod scores obtained with the markers DXS987, DXS207, and DXS999 were 3.97, 2.71, and 2.40, respectively, all at 0% recombination. Multipoint linkage analysis localized the disease gene between DXS143 and DXS989 with a maximum lod score of 4.70 at θ = 0, relative to DXS987. As both the classical XLG gene and the liver α-subunit of PHK (PHKA2) are also located in Xp22, this variant type of XLG may be allelic to classical XLG, and both diseases may be caused by mutations in PHKA2. Therefore, we propose to classify XLG as XLG type I (the classical type of XLG) and XLG type II (the variant type of XLG).  相似文献   

5.
Mutations in the liver isoform of the Phosphorylase Kinase (PhK) alpha subunit (PHKA2 gene) cause X-linked liver glycogenosis (XLG), the most frequent type of PhK deficiency (glycogen-storage disease type IX). XLG patients can be divided in two subgroups, with similar clinical features but different activity of PhK (decreased in liver and blood cells for XLG-I and low in liver but normal or enhanced in blood cells for XLG-II). Here, we show that the PHKA2 missense mutations and small in-frame deletions/insertions are concentrated into two domains of the protein, which were recently described. In the N-terminal glucoamylase domain, mutations (principally leading to XLG-II) are clustered within the predicted glycoside-binding site, suggesting that they may have a direct impact on a possible hydrolytic activity of the PhK alpha subunit, which remains to be demonstrated. In the C-terminal calcineurin B-like domain (domain D), mutations (principally leading to XLG-I) are clustered in a region predicted to interact with the regulatory region of the PhK catalytic subunit and in a region covering this interaction site. Altogether, these results show that PHKA2 missense mutations or small in-frame deletions/insertions may have a direct impact on the PhK alpha functions and provide a framework for further experimental investigation.  相似文献   

6.
7.
Fanconi-Bickel syndrome is characterized by hepato-renal glycogenosis with severe renal tubular dysfunction and rickets. It has recently been found to be associated with GLUT2 mutations in three families. In another family, low activities of liver phosphorylase kinase (Phk) have been observed, suggesting that Fanconi-Bickel syndrome might be genetically heterogeneous. We have analyzed this family for mutations in the GLUT2 gene and in the three Phk subunit genes that can cause liver glycogenosis (PHKA2, PHKB, and PHKG2). The coding sequences of all three Phk genes are normal but we have identified a homozygous missense mutation (Pro417Leu) in GLUT2. The affected proline residue is completely conserved in all mammalian glucose permease isoforms and even in bacterial sugar transporters and is believed to be critical for the passage of glucose through the permease. Seven affected individuals from different branches of the same large consanguineous sibship all are homozygous for this mutation. These findings indicate that there is no specific subtype of genetic Phk deficiency giving rise to hepato-renal glycogenosis. Rather, they provide further evidence that Fanconi-Bickel syndrome is caused by GLUT2 mutations. The low Phk activity is probably a secondary phenomenon that contributes to the deposition of glycogen in response to the intracellular glucose retention caused by GLUT2 deficiency.  相似文献   

8.
Phosphorylase kinase (PHK), the enzyme that activates glycogen phosphorylases in muscle, liver, and other tissues, is composed of four different subunits. Recently isolated rabbit muscle cDNAs for the larger two subunits, alpha and beta, have been used to map the location of their cognate sequences on human chromosomes. Southern blot analysis of rodent x human somatic cell hybrid panels, as well as in situ chromosomal hybridization, have provided evidence of single sites for both genes. The alpha subunit gene (PHKA) is located on the proximal long arm of the X chromosome in region Xq12-q13 near the locus for phosphoglycerate kinase (PGK1). X-linked mutations leading to PHK deficiency, known to exist in humans and mice, are likely to involve this locus. This hypothesis is consistent with the proximity of the Phk and Pgk-1 loci on the mouse X chromosome. In contrast, the beta subunit gene (PHKB) was found to be autosomal and was mapped to chromosome 16, region q12-q13 on the proximal long arm. Several different autosomally inherited forms of PHK deficiency for which the PHKB could be a candidate gene have been described in humans and rats.  相似文献   

9.
Mutations in the gene encoding the gamma(2) subunit of the AMP-activated protein kinase (AMPK) have recently been shown to cause cardiac hypertrophy and ventricular pre-excitation (Wolff-Parkinson-White syndrome). We have examined the effect of four of these mutations on AMPK activity. The mutant gamma(2) polypeptides are all able to form functional complexes following co-expression with either alpha(1)beta(1) or alpha(2)beta(1) in mammalian cells. None of the mutations caused any detectable change in the phosphorylation of threonine 172 within the alpha subunit of AMPK. Consequently, in the absence of an appropriate stimulus the mutant complexes, like the wild-type complex, exist in an inactive form demonstrating that the mutations do not lead to constitutive activation of the kinase. Three of the mutations we studied occur within the cystathionine beta-synthase (CBS) domains of gamma(2). Two of these mutations lead to a marked decrease in AMP dependence, whereas the third reduces AMP sensitivity. These findings suggest that the CBS domains play an important role in AMP-binding within the complex. In contrast, a fourth mutation, which lies between adjacent CBS domains, has no significant effect on AMPK activity in vitro. These results indicate that mutations in gamma(2) have different effects on AMPK function, suggesting that they may lead to abnormal development of the heart through distinct mechanisms.  相似文献   

10.
Heterotrimeric G proteins, consisting of Gα, Gβ, and Gγ subunits, play important roles in plant development and cell signaling. In Arabidopsis, in addition to one prototypical G protein α subunit, GPA1, there are three extra-large G proteins, XLG1, XLG2, and XLG3, of largely unknown function. Each extra-large G (XLG) protein has a C-terminal Gα-like region and a ~400 amino acid N-terminal extension. Here we show that the three XLG proteins specifically bind and hydrolyze GTP, despite the fact that these plant-specific proteins lack key conserved amino acid residues important for GTP binding and hydrolysis of GTP in mammalian Gα proteins. Moreover, unlike other known Gα proteins, these activities require Ca(2+) instead of Mg(2+) as a cofactor. Yeast two-hybrid library screening and in vitro protein pull-down assays revealed that XLG2 interacts with the nuclear protein RTV1 (related to vernalization 1). Electrophoretic mobility shift assays show that RTV1 binds to DNA in vitro in a non-sequence-specific manner and that GTP-bound XLG2 promotes the DNA binding activity of RTV1. Overexpression of RTV1 results in early flowering. Combined overexpression of XLG2 and RTV1 enhances this early flowering phenotype and elevates expression of the floral pathway integrator genes, FT and SOC1, but does not repress expression of the floral repressor, FLC. Chromatin immunoprecipitation assays show that XLG2 increases RTV1 binding to FT and SOC1 promoters. Thus, a Ca(2+)-dependent G protein, XLG2, promotes RTV1 DNA binding activity for a subset of floral integrator genes and contributes to floral transition.  相似文献   

11.
The G protein subunit, betagamma, plays an important role in targeting alpha subunits to the plasma membrane and is essential for binding and activation of the heterotrimer by heptahelical receptors. Mutation of residues in the N-terminal alpha-helix of alpha s and alpha q that contact betagamma in the crystal structure of alpha i reduces binding between alpha and betagamma, inhibits plasma membrane targeting and palmitoylation of the alpha subunit, and results in G proteins that fail to couple receptor activation to stimulation of effector. Overexpression of betagamma can recover this loss of signaling through Gs but not Gq. In fact, a single mutation (I25A) in alpha q can block alpha q-mediated generation of inositol phosphates. Function is not recovered by betagamma overexpression nor myristoylation directed plasma membrane localization. Introduction of a Q209L activating mutation with I25A results in a constitutively active alpha q as expected, but surprisingly a R183C activating mutation does not result in constitutive activity when present with I25A. Examination of binding between alpha and betagamma via a pull down assay shows that the N-terminal betagamma-binding mutations inhibit alpha-betagamma binding significantly more than the R183C or Q209L activating mutations do. Moreover, introduction of the I25A mutation into alpha q RC disrupts co-immunoprecipitation with PLCbeta1. Taken together, results presented here suggest that alpha-betagamma binding is necessary at a point downstream from receptor activation of the heterotrimeric G protein for signal transduction by alpha q.  相似文献   

12.
Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.  相似文献   

13.
14.
Defects in complex I (NADH:ubiquinone oxidoreductase (EC 1.6.5.3)) are the most frequent cause of human respiratory disorders. The pathogenicity of a given human mitochondrial mutation can be difficult to demonstrate because the mitochondrial genome harbors large numbers of polymorphic base changes that have no pathogenic significance. In addition, mitochondrial mutations are usually found in the heteroplasmic state, which may hide the biochemical effect of the mutation. We propose that the unicellular green alga Chlamydomonas could be used to study such mutations because (i) respiratory complex-deficient mutants are viable and mitochondrial mutations are found in the homoplasmic state, (ii) transformation of the mitochondrial genome is feasible, and (iii) Chlamydomonas complex I is similar to that of humans. To illustrate this proposal, we introduced a Leu157Pro substitution into the Chlamydomonas ND4 subunit of complex I in two recipient strains by biolistic transformation, demonstrating that site-directed mutagenesis of the Chlamydomonas mitochondrial genome is possible. This substitution did not lead to any respiratory enzyme defects when present in the heteroplasmic state in a patient with chronic progressive external ophthalmoplegia. When present in the homoplasmic state in the alga, the mutation does not prevent assembly of whole complex I (950 kDa) and the NADH dehydrogenase activity of the peripheral arm of the complex is mildly affected. However, the NADH:duroquinone oxidoreductase activity is strongly reduced, suggesting that the substitution could affect binding of ubiquinone to the membrane domain. The in vitro defects correlate with a decrease in dark respiration and growth rate in vivo.  相似文献   

15.
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.  相似文献   

16.
Heterotrimeric G proteins composed of α, β and γ subunits regulate a number of fundamental processes concerned with growth and development in plants. In addition to the canonical heterotrimeric G proteins, plants also contain a small family of extra large G proteins (XLGs) that show significant similarity to the G-protein α subunit in their C-terminal regions. In this paper we show that one of the three XLG genes, XLG3 , and the Gβ subunit (AGB1) of the Arabidopsis G-protein heterotrimer are specifically involved in the regulation of a subset of root morphological and growth responses. Based on analysis of T-DNA insertional mutant phenotypes, XLG3 and AGB1 each positively regulate root waving and root skewing. Since these responses are regulated by physical as well as physiological cues, we assessed the roles of AGB1 and XLG3 in gravitropism, thigmotropism and hormonal responses. Our data show that mutants lacking either XLG3 or AGB1 genes are hypersensitive to ethylene and show growth responses consistent with alterations in auxin transport, while maintaining an essentially wild-type response to the physical cues of gravity and touch. These results suggest that XLG3 and AGB1 proteins regulate the hormonal determinants of root-waving and root-skewing responses in plants and possibly interact in a tissue-specific or signal-specific manner. Because plants harboring knockout mutations in the Gα subunit gene, GPA1 , exhibit wild-type root waving and skewing, our results may indicate that the AGB1 subunit functions in these processes without formation of a classic Gαβγ heterotrimer.  相似文献   

17.
Novel splice variants of the alpha(1) subunit of the Ca(v)1.2 voltage-gated Ca(2+) channel were identified that predicted two truncated forms of the alpha(1) subunit comprising domains I and II generated by alternative splicing in the intracellular loop region linking domains II and III. In rabbit heart splice variant 1 (RH-1), exon 19 was deleted, which resulted in a reading frameshift of exon 20 with a premature termination codon and a novel 19-amino acid carboxyl-terminal tail. In the RH-2 variant, exons 17 and 18 were deleted, leading to a reading frameshift of exons 19 and 20 with a premature stop codon and a novel 62-amino acid carboxyl-terminal tail. RNase protection assays with RH-1 and RH-2 cRNA probes confirmed the expression in cardiac and neuronal tissue but not skeletal muscle. The deduced amino acid sequence from full-length cDNAs encoding the two variants predicted polypeptides of 99.0 and 99.2 kDa, which constituted domains I and II of the alpha(1) subunit of the Ca(v)1.2 channel. Antipeptide antibodies directed to sequences in the second intracellular loop between domains II and III identified the 240-kDa Ca(v)1.2 subunit in sarcolemmal and heavy sarcoplasmic reticulum (HSR) membranes and a 99-kDa polypeptide in the HSR. An antipeptide antibody raised against unique sequences in the RH-2 variant also identified a 99-kDa polypeptide in the HSR. These data reveal the expression of additional Ca(2+) channel structural units generated by alternative splicing of the Ca(v)1.2 gene.  相似文献   

18.
Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO.  相似文献   

19.
Sixteen mutants of Escherichia coli defective in H+-ATPase (proton-translocating ATPase) were tested for their ability to recombine with hybrid plasmids carrying various portions of the beta subunit cistron. Twelve mutations were mapped within the carboxyl half of the cistron corresponding to amino acid residues 279 to 459 (domain II), while four mutations were mapped within residues 17 to 278 (domain I). The biochemical properties of these mutants were analyzed in terms of the proton permeability of their membranes and the assembly properties of their F1F0 complex. The mutants were classified according to the properties into three types, I, II, and III. In 12 mutants of type I, proton conduction in membrane vesicles was blocked and little F1 was released from the membranes under conditions in which F1 could be released from wild-type membranes, suggesting that assembly of the F1F0 complex is structurally and functionally defective. F1 was partially purified with very low recovery from one of the type I mutants, KF16. ATPase activity was reconstituted from this F1 with the beta subunit of the wild type, confirming the genetic results. Only one mutant, KF38, was classified as type II. Its membranes were partially leaky to protons and its F1 was releasable, suggesting that the interaction of its F1 and F0 was unstable. Type III mutants, KF11 and KF43, had an F1F0 complex with very low activity, in which the structure of F1 was relatively similar to that of the wild type. F1 was purified as a single complex from KF43 in this study and from KF11 previously (H. Kanazawa, Y. Horiuchi, M. Takagi, Y. Ishino, and M. Futai (1980) J. Biochem. 88, 695-703). Reconstitution experiments in vitro showed that the F1's of both mutants were defective in the beta subunit. The properties of the altered F1 of KF43 differed from those of F1 of KF11, suggesting that the mutation sites of KF43 and KF11 were different. From the results of mapping mutation sites and the biochemical properties of the mutants, the correlation of structural domains with function of the beta subunit is discussed. Most type I and type II mutations except that of KF39 were mapped in domain II, while the type III mutations were mapped in domain I, suggesting that domain II is more important than domain I for the function of the beta subunit, especially in terms of proper assembly of the F1F0 complex.  相似文献   

20.
Maple syrup urine disease (MSUD) results from mutations affecting different subunits of the mitochondrial branched-chain alpha-ketoacid dehydrogenase complex. In this study, we identified seven novel mutations in MSUD patients from Israel. These include C219W-alpha (TGC to TGG) in the E1alpha subunit; H156Y-beta (CAT to TAT), V69G-beta (GTT to GGT), IVS 9 del[-7:-4], and 1109 ins 8bp (exon 10) in the E1beta subunit; and H391R (CAC to CGC) and S133stop (TCA to TGA) affecting the E2 subunit of the branched-chain alpha-ketoacid dehydrogenase complex. Recombinant E1 proteins carrying the C219W-alpha or H156Y-beta mutation show no catalytic activity with defective subunit assembly and reduced binding affinity for cofactor thiamin diphosphate. The mutant E1 harboring the V69G-beta substitution cannot be expressed, suggesting aberrant folding caused by this mutation. These E1 mutations are ubiquitously associated with the classic phenotype in homozygous-affected patients. The H391R substitution in the E2 subunit abolishes the key catalytic residue that functions as a general base in the acyltransfer reaction, resulting in a completely inactive E2 component. However, wild-type E1 activity is enhanced by E1 binding to this full-length mutant E2 in vitro. We propose that the augmented E1 activity is responsible for robust thiamin responsiveness in homozygous patients carrying the H391R E2 mutation and that the presence of a full-length mutant E2 is diagnostic of this MSUD phenotype. The present results offer a structural and biochemical basis for these novel mutations and will facilitate DNA-based diagnosis for MSUD in the Israeli population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号