首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexokinase, glucokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity was studied in the liver and musculus quadriceps femoris of 110-day foetuses 1, 2, 3, 30 and 60-day piglets and in adult pigs. The activity of all enzymes in the tissues of newborn piglets is considerably higher than in the tissues of foetuses. The activity of hexokinase in both tissues of piglets increases in the first days after birth and lowers by the one month age. The phosphofructokinase activity in the skeletal muscles and the glucokinase one in the pig liver increase during the postnatal development. The activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in both tissues of pigs increases after birth and then decreases. Glucose metabolism in the pig liver at all stages of odontogenesis proceeds more intensively by the pentose phosphate pathway, and in the skeletal muscles--by glycolytic one.  相似文献   

2.
Metabolism of carbohydrates in the brain of 110-day-feti, newborns (before taking the colostrum), 1-day-old and 5-day-old piglets, grown under sows or starved for 24 hours has been studied. Examination of brain slices with the use of 1-14C glucose and 6-14C glucose and determination of the glycolysis-limiting enzymes activity have shown that glycolysis is the main pathway of glucose utilization in the central nervous system of pigs during the transition from prenatal to postnatal development. The major portion of NADPH in the brain of new born piglets is supplied by dehydrogenases of the pentose-phosphate pathway. The increased activities of NADP-dependent malate and citrate dehydrogenases are found in the cytoplasm of astrocytes during the neonatal period. The decreased intensity of glycolysis and pentose-phosphate pathway in the brain of 1-day-old piglets is associated with the increased rate of malate and isocitrate oxidation. Starvation for 24 hours causes changes in the carbohydrate metabolism rates in the brain of piglets. The pentose-phosphate pathway rate increases by 70-80 per cent in the brain structures of piglets of the both groups. Besides, the iso-CDG activity also rises in the brain of 5-day-old animals. The high level of oxidation-reduction processes in the brain of older piglets at active glycolysis is supposed to be one of the peculiarities of energy metabolism in the central nervous system of animals which are resistant to starvation.  相似文献   

3.
Chronic gamma-irradiation during 3.5 and 6 months (at a dose = rate of 46.2 pC/kg X c) of Microtus oeconomus living in conditions of normal and increased (by 50-100 times) gamma-radiation background, and of their progeny (the 1st, 2nd, 3d, and 4th generations) causes in homogenates of cardiac muscle, liver, and brain different changes in activity of succinate dehydrogenase (1.3.99.1, EC), pyruvate dehydrogenase (1.2.4.1, EC), and lactate dehydrogenase (1.1.1.27, EC) associated with the discordance of the processes of tissue respiration and glycolysis. The changes in dehydrogenases activity in Microtus oeconomus subjected to chronic irradiation were nearly the same as those found in their parents.  相似文献   

4.
The relative substrate specificities of glucose dehydrogenases (E.C. 1.1.1.47) from beef liver and rat liver are very different. The beef enzyme oxidizes glucose more rapidly than either glucose-6-phosphate or galactose-6-phosphate. On the other hand, the dehydrogenase from rat liver prefers the hexose phosphates to glucose.A procedure for estimating the level of glucose dehydrogenase in rat and beef liver is described. The glucose-6-phosphate dehydrogenase activity attributed to glucose dehydrogenases is estimated to be about one-fifth and one-third that of cytoplasmic glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) in female and male rat liver respectively.A fluorometric adaptation of the less sensitive spectrophotometric assay for glucose dehydrogenase is described.  相似文献   

5.
Comparative studies have been made in the specific activity of sorbitol dehydrogenase, glucose-6-phosphate and alcohol dehydrogenases in the cytoplasm from the liver of wild and domestic ducks, hen and pheasant. High activity of all the three enzymes was found in ducks indicating the effective sorbitol (polyol) metabolism of glucose. The activity of glucose-6-phosphate dehydrogenase is an order lower as compared with the activity of sorbitol and alcohol dehydrogenases in the cytoplasm of hen liver. The same relationship was found for the activity of sorbitol dehydrogenase in the cytoplasm of pheasant liver.  相似文献   

6.
Cyclopropenoid fatty acids in the diet of rainbow trout caused significant reductions in liver protein and activity of glucose-6-phosphate dehydrogenase, NADP-linked isocitrate dehydrogenase, lactate dehydrogenase, and malate dehydrogenase. Changes in total activity were usually accompanied by similar changes in specific activity. The activity of glucose-6-phosphate dehydrogenase appeared to be more sensitive to the ingestion of cyclopropenoid fatty acids than the other dehydrogenases studied. Feeding 20 ppb aflatoxin B(1) to rainbow trout did not significantly change the activity of the dehydrogenases except for a small increase in the activity of glucose-6-phosphate dehydrogenase after 21 days of feeding. Relationships of these changes to the cocarcinogenicity of cyclopropenoid fatty acids and the carcinogenicity of aflatoxin are discussed.  相似文献   

7.
The mammary gland tissue hexose monophosphate dehydrogenase activities were low in virgin, pregnant and weaned rats, but increased at the onset of lactation. The muscle and liver glucose 6-phosphate dehydrogenase activity peaked at early and late lactation respectively. The liver 6-phosphogluconate dehydrogenase peaked in late pregnancy and remained elevated through lactation. The muscle 6-phosphogluconate dehydrogenase peaked at the onset of lactation. The adipose tissue hexose monophosphate dehydrogenases exhibited small changes during pregnancy and lactation. The spleen hexose monophosphate dehydrogenases did not respond to lactation An overshoot in both the liver and the adipose tissue hexose monophosphate dehydrogenases was observed on weaning. Serum glucose levels remained unchanged throughout pregnancy, lactation and weaning. Only liver glucose 6-phosphate dehydrogenase activity correlated with plasma insulin, which also correlated positively with food consumption. The results demonstrate that tissue-specific control of the hexose monophosphate dehydrogenases occurs in the female rat during its complete lactation cycle.  相似文献   

8.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

9.
The pre- and post-natal ontogeny of Sprague-Dawley rat liver aldehyde dehydrogenase [aldehyde-NAD(P)(+) oxidoreductase, EC 1.2.1.5] is described. At no time in its ontogenetic development does normal liver aldehyde dehydrogenase exhibit any of the characteristics of a series of unique aldehyde dehydrogenases that can be isolated from 2-acetamidofluorene-induced rat hepatomas. Enzyme activity is first detectable in 15-day foetal liver and gradually increases throughout pre- and post-natal development until adult activities are attained by day 49 after birth. Electrophoretically, normal aldehyde dehydrogenase, throughout its ontogeny, exists as the same single isoenzyme found in normal adult liver. Isoelectric points for two normal liver isoenzymes demonstrable by isoelectric focusing are pH5.9 and 6.0. The immunochemical properties of aldehyde dehydrogenase during its ontogeny are identical with those of normal adult liver aldehyde dehydrogenase when tested against anti-(hepatoma aldehyde dehydrogenase) serum in Ouchterlony double-diffusion tests. The results indicate that the hepatoma-specific aldehyde dehydrogenases are not the result of the de-repression of genes normally repressed in adult rat liver or in some other adult tissue.  相似文献   

10.
A L Metsis 《Tsitologiia》1988,30(7):882-887
By the means of light-microscopic cytological enzymatic methods, the presence of several enzymes (NAD.H and NADP.H-tetrazolium reductases, in addition to alcohol, succinate, isocitrate, glucose-6-phosphate, beta-hydroxybutyrate and glutamate dehydrogenases) has been studied in the tissue cysts of S. bovicanis. A mixed character of oxidative metabolism in the cyst stages is suggested, the involvement of gluconeogenesis being proposed. Neither beta-hydroxybutyrate nor alcohol dehydrogenase activity was demonstrated indicating the absence or a very low rate of lipid metabolism, and suggesting that the process of glycolysis may end with malate formation. From the low activity level of succinate dehydrogenases it is concluded that the citric acid cycle plays presumably a secondary role, if at all, in the energy supply of the cyst stages. Also, a low activity of glucose-6-phosphate dehydrogenases is pointed out. Thus, it is proposed that glycolysis may be primary, if not the only, oxidative pathway in the cyst stages.  相似文献   

11.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

12.
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC 1.1.1.41 and 1.1.1.42, respectively) in the brain and liver of rats of various ages were investigated. The activity of NAD-linked isocitrate dehydrogenase of the brain was greater than cytoplasmic or mitochondrial NADP-linked isocitrate dehydrogenase. In contrast, the cytoplasmic NADP-isocitrate dehydrogenase of the liver predominates over both NAD- and mitochondrial NADP-isocitrate dehydrogenases at the three ages studied. The activity of NAD-isocitrate dehydrogenase increased in the brain (139%) and liver (17%) of rats upt o 33 weeks of age and decreased (57 and 39%, respectively) in old rats (85-week-old). The activity of cytoplasmic NADP-isocitrate dehydrogenase was maximum in immature (6-week-old) rat brain and decreased as the age of the rats increased; whereas, in liver, the activity of this enzyme was found to be maximum in adult rats (33-week-old). Brain mitochondrial NADP-isocitrate dehydrogenase activity increased (64%) in adult rats, but in liver it decreased (45 and 33% in 33- and 85-week-old rats, respectively). In both tissues, adrenalectomy and hydrocortisone treatment showed differential age-dependent response. Hydrocortisone-mediated induction of the level of enzymes was inhibited by actinomycin D.  相似文献   

13.
V S Faustov 《Ontogenez》1977,8(4):361-369
The activity of the enzymes of glycolysis (phosphofructokinase, aldolase, pyruvate kinase, lactate dehydrogenase) and hexose monophosphate shunt (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) was determined in the eye tissues of the rabbit at different stages of ontogenesis. The activity of these enzymes in the retina was shown to be higher than in other eye tissues. In the uveal tract (iris, ciliary bodies, uvea) the activity of glycolytic enzymes changes with the age. The greatest changes in the activity of enzymes were found during the period of the opening of eyelids. The activity of the enzymes of hexose monophosphate shunt in the eye tissues increases with the age. The relative activity of dehydrogenases of the hexose monophosphate shunt after the establishment of visual function is, however, not high and does not exceed that of phosphofructokinase and pyruvate kinase in the eye tissues of the rabbit.  相似文献   

14.
15.
The biochemical strategy of colon tumor was investigated by comparing the enzymic programs of glycolysis, pentose phosphate production and purine and pyrimidine biosynthesis and degradation in liver, normal colon mucosa and transplantable colon adenocarcinoma in the mouse. In normal colon mucosa the carbohydrate and pentose phosphate enzymes were 2- to 9-fold higher in specific activity than those in liver. Among the enzymes of CTP synthesis, CTP synthetase was the rate-limiting one in both liver and colon. In colon tumor CTP synthetase, OMP decarboxylase, uracil phosphoribosyltransferase and thymidine kinase activities increased to 927, 863, 597 and 514% of activities of normal colon. In contrast, the activity of the catabolic enzymes, dihydrothymine dehydrogenase and uridine phosphorylase, decreased to 51 and 25%. The ratios of activities of uridine kinase/uridine phosphorylase and thymidine kinase/dihydrothymine dehydrogenase were elevated 6- and 10-fold. The activity of the key purine synthetic enzyme, glutamine PRPP amidotransferase, increased 7-fold and the opposing rate-limiting enzyme of purine catabolism, xanthine oxidase, decreased to 7%. The ratio of amidotransferase/xanthine oxidase was elevated to 8, 150%. Activities of glucose-6-phosphate dehydrogenase and transaldolase did not increase, but that of pyruvate kinase was elevated to 154%. Similar enzymic programs were observed in a transplantable adenocarcinoma of the colon in the rat. The alterations in gene expression in colon tumor manifested in an integrated pattern of enzymic imbalance indicate the display of a program, a segment of which is shared with rat and human liver and kidney tumors. These alterations in gene expression should confer selective advantages to colon tumor cells. The striking increases in the activities of CTP synthetase, OMP decarboxylase, glutamine PRPP amidotransferase and thymidine kinase mark out these enzymes as potentially sensitive targets for combination chemotherapy by specific inhibitors of these enzyme activities.  相似文献   

16.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase.The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase and hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

17.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase. The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

18.
Summary The histochemistry of five dehydrogenases, namely isocitrate, succinate and lactate dehydrogenases and NADH and NADPH diaphorases were studied in the tissues of the schistosome vector snail,Bulinus truncatus, before and after treatment with the molluscicide Frescon. Isocitrate and succinate dehydrogenases showed their strongest activity in the respiratory epithelia, while lactate dehydrogenase showed a high level of activity in the tissues that are known to be capable of glycolysis. Following the administration of Frescon, a marked loss in the activity of isocitrate dehydrogenase and NADPH diaphorase occurred.It is postulated that the molluscicide toxin may interfere with cellular respiration, especially in the exposed areas of the body.  相似文献   

19.
1. Starting from the spectrophotometric method of Ballard optimal reaction conditions for measurements of galactokinase in piglet liver were systematically studied. These are (final conc. in the test): 100 mM triethanolamine-HCl buffer, 33 mM KCl, 16.5 mM NaF (inhibiting ATPase), 5 mM cysteine hydrochloride, 0.33 mM NADH2, 1 U pyruvate kinase and lactic dehydrogenase, 0.5 mM phosphoenolpyruvate, 1.5 mM galactose, 0.5 mM ATP and 1 mM MgCl2, final pH 7.5. 2. An optimal substrate concentration, a Mg: ATP-ratio of 2:1, pH-stability and addition of activators are important for the determination of galactokinase activity in the supernatant fraction of pig liver. 3. Using the optimized method galactokinase activity of pig liver in dependence on age, with particular reference to the perinatal period, was determined. 4. Galactokinase activity of liver of newborn piglets is 7 times that of adult pigs. In the suckling period the activity remains relatively constant at this high level and decreases remarkably immediately after weaning. 5. Galactokinase of liver of newborn piglets differs in kinetic properties (lower Km of ATP, higher maximal reaction velocity) from the enzyme of adult pigs, which is still insufficient to make sure the existence of two different forms of the enzyme.  相似文献   

20.
Young adult male rats were fasted for 3 days, then fed a glucose-rich diet, ad libitum. At the end of the fasting period, the specific activity of liver glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was decreased to 60% of control (nonfasted) levels. After 24 to 72 h of refeeding, the specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase increased seven- and twofold, respectively. During the fasting period, the liver lysosome fragility increased, as judged by increased release of bound acid phosphatase and β-N-acetylglucosammidase activity during standard homogenization. Three hours after feeding a carbohydrate-rich diet, a further increase in liver lysosomal fragility was observed that returned to control values prior to the induction of the dehydrogenases. Similarly, the susceptibility of liver lysosomes from fasted rats to increased fragility by the intraperitoneal injection of glucose or galactose was also observed. Prior starvation was not a requisite for labilization of lysosomal membranes by injected glucose, but induction of the pentose phosphate shunt dehydrogenase was not observed.In a group of 6-week old male rats fed a commercial pellet diet throughout, the injection of insulin caused no change in liver lysosomal fragility, though hypoglycemia resulted. Similar animals made diabetic by treatment with Streptozotocin and diabetic rats given insulin, showed no change in liver lysosmal fragility based on the percentage of free to total activities of β-N-acetylglucosaminidase, β-glucuronidase, β-galactosidase, and Cathespin D. However, when adult female rats were fasted for 24 h, then injected with sufficient insulin to produce hypoglycemia, liver lysosomal fragility, based on the release of β-N-acetylglucosaminidase during homogenization, increased nearly threefold. These studies demonstrate that stimulated lysosomal fragility can be initiated by refeeding fasted animals a carbohydrate-rich diet, by intraperitoneal injections of fasted rats with glucose or galactose, or by administering insulin alone to fasted rats. However, hyperglycemia induced by diabetogenic doses of Streptozotocin, or hypoglycemia induced in well-fed animals by insulin injection failed to elicit an enhanced liver lysosomal fragility. Whether induction of the enzymes of lipogenesis by rat liver is dependent upon a prior lysosomal membrane labilization remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号