首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of habitat fragmentation on different taxa and ecosystems are subject to intense debate, and disentangling them is of utmost importance to support conservation and management strategies. We evaluated the importance of landscape composition and configuration, and spatial heterogeneity to explain α- and β-diversity of mammals across a gradient of percent woody cover and land use diversity. We expected species richness to be positively related to all predictive variables, with the strongest relationship with landscape composition and configuration, and spatial heterogeneity respectively. We also expected landscape to influence β-diversity in the same order of importance expected for species richness, with a stronger influence on nestedness due to deterministic loss of species more sensitive to habitat disturbance. We analyzed landscape structure using: (a) landscape metrics based on thematic maps and (b) image texture of a vegetation index. We compared a set of univariate explanatory models of species richness using AIC, and evaluated how dissimilarities in landscape composition and configuration and spatial heterogeneity affect β-diversity components using a Multiple Regression on distance Matrix. Contrary with our expectations, landscape configuration was the main driver of species richness, followed by spatial heterogeneity and last by landscape composition. Nestedness was explained, in order of importance, by spatial heterogeneity, landscape configuration, and landscape composition. Although conservation policies tend to focus mainly on habitat amount, we advocate that landscape management must include strategies to preserve and improve habitat quality and complexity in natural patches and the surrounding matrix, enabling landscapes to harbor high species diversity.  相似文献   

2.
In this paper, we tested whether the spatial distribution of a given species in more or less fragmented and disturbed landscapes depends on the species habitat specialization. We studied 891 spatial replicates from the French Breeding Bird Survey (FBBS) monitored at least two years during 2001–2005, and two independent landscape databases measuring respectively landscape fragmentation and recent landscape disturbance on each FBBS replicate. We used a continuous habitat specialization index for the 105 most common bird species monitored by the FBBS. We further modelled the spatial variation in abundance of each species according to fragmentation and disturbance across FBBS replicates, accounting for habitat differences and spatial trends. We then tested whether more or less specialized species responded to landscape fragmentation and disturbance. We found that the more specialist a species, the more negative its spatial response to landscape fragmentation and disturbance. Although there was a very high variation around these tendencies indicating that there are many other drivers of species distribution, our results suggest that measuring specialization may be helpful in predicting which species are likely to thrive in human degraded landscapes. We also emphasize the need to consider both positive and negative species responses when assessing consequences of habitat change in communities.  相似文献   

3.
In landscape ecology, correlational approaches are typically used to analyse links between local population abundance, and the surrounding habitat amount to estimate biologically-relevant landscape size (extent) for managing endangered or pest populations. The direction, strength, and spatial extent of the correlations are then sometimes interpreted in terms of species population parameters. Here we simulated the population dynamics of generalized species across spatially explicit landscapes that included two distinct habitat types. We investigated how characteristics of a landscape (structure), including the variation in habitat quality and spatial aggregation of the habitat, and the precise population-dynamic properties of the simulated species (dispersal and growth rates) affect the correlation between population abundance and amount of surrounding favourable habitat in the landscape. To evaluate these spatial extents of correlation, proportions of favourable habitat were calculated within several circles of increasing diameter centred on sampling patches of favourable habitat where population abundance was recorded.We found that the value of the correlation coefficients between population abundance and amount of surrounding favourable habitat depended on both population dynamic parameters and landscape characteristics. Coefficients of correlation increased with the variation in habitat quality and the aggregation of favourable habitat in the landscape, but decreased with the dispersal distance. The distance at which the correlation was maximized was sensitive to an interaction between the level of aggregation of the habitat and the dispersal distance; whereas the greatest distance at which a significant correlation occurred was more sensitive to the variation in habitat quality. Our results corroborate the view that correlational analyses do provide information on the local population dynamics of a species in a given habitat type and on its dispersal rate parameters. However, even in simplified, model frameworks, direct relationships are often difficult to disentangle and global landscape characteristics should be reported in any studies intended to derive population-dynamic parameters from correlations. Where possible, replicated landscapes should be examined in order to control for the interaction between population dynamics and landscape structure. Finally, we recommend using species-specific, population-dynamic modelling in order to interpret correctly the observed patterns of correlation in the landscape.  相似文献   

4.
Population connectivity is mediated by the movement of organisms or propagules through landscapes. However, little is known about how variation in the pattern of landscape mosaics affects the detectability of landscape genetic relationships. The goal of this paper is to explore the impacts of limiting factors on landscape genetic processes using simulation modeling. We used spatially explicit, individual-based simulation modeling to quantify the effects of habitat area, fragmentation and the contrast in resistance between habitat and non-habitat on the apparent strength and statistical detectability of landscape genetic relationships. We found that landscape genetic effects are often not detectable when habitat is highly connected. In such situations landscape structure does not limit gene flow. We also found that contrast in resistance values between habitat and non-habitat interacts with habitat extensiveness and fragmentation to affect detectability of landscape genetic relationships. Thus, the influence of landscape features critical to providing connectivity may not be detectable if gene flow is not limited by spatial patterns or resistance contrast of these features. We developed regression equations that reliably predict whether or not isolation by resistance will be detected independently of isolation by distance as a function of habitat fragmentation and contrast in resistance between habitat and non-habitat.  相似文献   

5.
It is important to understand the relative effects of landscape habitat loss, habitat fragmentation, and matrix quality on biodiversity, so that potential management options can be appropriately ranked. However, their effects and relative importance may change with the size of the landscape considered because the multiple (and potentially conflicting) ecological processes that are influenced by landscape structure occur at different spatial scales (e.g. dispersal, predation, foraging). We estimated the relative effects of habitat loss, habitat fragmentation, and matrix quality (measured as the amount of forest, the proportion of forest area contained in large core forests, and the density of roads respectively) on fragmentation‐sensitive forest birds in southern Ontario, Canada using a range of landscape sizes (0.8–310 km2). We used three complementary statistical approaches to estimate relative effects of these correlated landscape factors – 1) multiple regression, 2) information theoretic (AIC) estimates of the most parsimonious model, and 3) multi‐model inference to average effects across all supported models. We controlled for spatial autocorrelation, local habitat, roadside sampling bias, time of day, season, habitat heterogeneity, and the interaction between the effects of habitat amount and fragmentation. We found that relative effects of habitat amount and fragmentation were scale dependent; habitat amount had a consistently positive effect that was consistent over more than two orders of magnitude in landscape area (~1–300 km2). In contrast, the effects of habitat fragmentation depended on the size of the landscape considered. Indeed, for veery Catharus fuscescens, habitat fragmentation had positive effects at one scale and negative effects at another. The effects of matrix quality were generally weak and changed little with scale. For the number of fragmentation sensitive species and the presence of veery, habitat amount was most important in large landscapes and habitat fragmentation in small landscapes but for the presence of ovenbird Seiurus aurocapilla, habitat amount was most important at all scales.  相似文献   

6.
Theoretical work has shown that spatial landscape context can contribute to reducing local adaptation in populations depending on the spatial pattern of environmental heterogeneity, the spatial scale of distances between habitats on landscapes, and the level of habitat connectivity. However, only a handful of empirical studies have addressed the impact of regional landscape context on local trait divergence in natural populations. We tested if local adaptation in abiotic tolerance is diminished in landscapes with strong spatial heterogeneity and habitat proximity. We used a freshwater copepod (Leptodiaptomus minutus) that is known to show local adaptive divergence in acid tolerance as a study system to understand the effects of regional landscape-level spatial heterogeneity in lake/pond pH on local trait divergence. We compared local divergence in copepod acid tolerance from three types of landscapes: (i) a homogeneous pH landscape of exclusively circumneutral lakes (pH ≥ 6.0); (ii) a heterogeneous pH landscape with a mixture of acidic and circumneutral lakes; and (iii) a heterogeneous pH landscape in which relatively infrequent circumneutral ponds are embedded in a predominantly acidic landscape. We found that local adaptation to circumneutral lake/pond pH was most reduced in the pH-heterogeneous landscape dominated by acidic habitats, likely because of gene flow from surrounding nearby acidic ponds. Our study empirically confirms theoretical predictions that spatial landscape context is important for explaining regional differences in population environmental tolerances. These effects may become important for understanding regional differences in population fitness trade-offs when presented in combination with multiple stressors.  相似文献   

7.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

8.
9.
Animal‐mediated pollination is essential for both ecosystem services and conservation of global biodiversity, but a growing body of work reveals that it is negatively affected by anthropogenic disturbance. Landscape‐scale disturbance results in two often inter‐related processes: (1) habitat loss, (2) disruptions of habitat configuration (i.e. fragmentation). Understanding the relative effects of such processes is critical in designing effective management strategies to limit pollination and pollinator decline. We reviewed existing published work from 1989 to 2009 and found that only six of 303 studies considering the influence of landscape context on pollination separated the effects of habitat loss from fragmentation. We provide a synthesis of the current landscape, behavioural, and pollination ecology literature in order to present preliminary multiple working hypotheses explaining how these two landscape processes might independently influence pollination dynamics. Landscape disturbance primarily influences three components of pollination interactions: pollinator density, movement, and plant demography. We argue that effects of habitat loss on each of these components are likely to differ substantially from the effects of fragmentation, which is likely to be more complex and may influence each pollination component in contrasting ways. The interdependency between plants and animals inherent to pollination systems also has the possibility to drive cumulative effects of fragmentation, initiating negative feedback loops between animals and the plants they pollinate. Alternatively, due to their asymmetrical structure, pollination networks may be relatively robust to fragmentation. Despite the potential importance of independent effects of habitat fragmentation, its effects on pollination remain largely untested. We postulate that variation across studies in the effects of ‘fragmentation’ owes much to artifacts of the sampling regimes adopted, particularly (1) incorrectly separating fragmentation from habitat loss, and (2) mis‐matches in spatial scale between landscapes studied and the ecological processes of interest. The field of landscape pollination ecology could be greatly advanced through the consideration and quantification of the matrix, landscape functional connectivity, and pollinator movement behaviour in response to these elements. Studies designed to disentangle the independent effects of habitat loss and fragmentation are essential for gaining insight into landscape‐mediated pollination declines, implementing effective conservation measures, and optimizing ecosystem services in complex landscapes.  相似文献   

10.
For habitat specialists, fragmentation has major consequences as it means less suitable habitat for the species to live in. In a fragmented landscape, we would expect larger, but spatially more clustered, foraging ranges. We studied the impact of landscape fragmentation on the foraging range and habitat exploitation of a specialised forest bat by radiotracking 16 female lesser horseshoe bats Rhinolophus hipposideros in a landscape with connected woodland structures and in a highly fragmented landscape in Carinthia, Austria.Contrary to our expectations, spatial foraging behaviour was not influenced by fragmentation. No differences in the behaviour of the bats between the sites were evident for the foraging ranges (minimum convex polygon, MCP), the core foraging areas (50% kernel), nor the mean or the maximum distances from the roost. However, in the highly fragmented landscape, the foraging activity of individuals was spatially more clustered and the overall MCP of all bats of a colony was greater compared to the less fragmented landscape.Woodland was the most important foraging habitat for the lesser horseshoe bats at both study sites. Habitat selection at the individual MCPs was evident only at the site with low fragmentation. However, in the core foraging areas, woodland was significantly selected over all other habitat types at both study sites.We conclude that (1) conservation measures for colonies of lesser horseshoe bats should be undertaken within 2.5 km of the nursery roost, (2) woodland is the key foraging habitat particularly in the vicinity of the roost, and (3) any loss of woodland near the colonial roosts are likely to negatively influence the colony, since these bats do not seem to be able to adapt their spatial foraging behaviour in a degraded landscape. The inflexible spatial behaviour of this specialised bat highlights the need to compensate for any habitat loss within the foraging range of a bat colony.  相似文献   

11.
This paper investigates the effect of a dynamic landscape on the persistence of many interacting species. We develop a multi-species community model with an evolving landscape in which the creation and destruction of habitat are dynamic and local in space. Species interactions are also local involving hierarchical competitive trade-offs. We show that dynamic landscapes can reverse the trend of increasing species richness with higher fragmentation observed in static landscapes. The increase in the species-area exponent from a homogeneous to a fragmented landscape does not occur when dynamics are turned on. Thus, temporal aspects of the processes that generate and destroy habitat appear dominant relative to spatial characteristics. We also demonstrate, however, that temporal and spatial aspects interact to influence the persistence time of individual species, and therefore, rank-abundance curves. Specifically, persistence in the model increases in habitats with faster local turnover because of the presence of dynamic corridors.  相似文献   

12.
Dynamic landscape models have generally assumed random distributions of habitat although real landscapes show spatial organization at many scales. To explore the role of spatial structure in determining the frequency of dispersal-limited forest species, we used a cellular landscape model divided into two zones. Zones were distributed in a random, clustered, or regular spatial pattern. Within each zone habitat cells were randomly destroyed and regenerated, and habitat density and turnover rate were systematically varied. A hypothetical habitat-limited species dispersed between adjacent habitat cells. All trials showed a reduced species frequency relative to a static landscape. Reduction was greater at low habitat density (P = 0.30) than at high density (0.90) suggesting the importance of habitat connectivity in controlling species frequency. The greatest reduction occurred when habitat was concentrated in a small, regularly distributed zone at low habitat density reflecting the enforced isolation of individual habitat cells. Very little reduction was observed when habitat cells were packed into a small clustered zone, a situation promoting connectivity between cells. Moderate–severe frequency reduction occurred when habitat turnover was concentrated in a clustered zone at high habitat density, but little was observed when turnover was widely distributed in a regular or random pattern. These results can be interpreted in terms of a source-sink function in which spatial pattern controlled the degree of contact between landscape zones and determined opportunities for dispersal between habitat cells. We conclude that clustering of forest habitat has the potential to maintain herb species frequency in sparsely forested landscapes. Conversely, clustering of forest disturbance in heavily forested regions, or regular distribution of forest stands (as often occurs in agricultural regions) creates areas which are difficult to colonize, and should be avoided.  相似文献   

13.
卢训令  刘俊玲  丁圣彦 《生态学报》2019,39(13):4602-4614
农业景观是人类生活所需资料的最主要来源地,农业景观及其提供的生物多样性和生态系统服务是影响人类福祉的最主要因素之一。系统梳理了景观异质性变化对生物多样性和生态系统服务影响的相关研究,总结指出:(1)农业景观格局变化会强烈的影响着区域生物多样性和生态系统服务,但总体上更关注了空间异质性,对于时间和功能异质性的研究仍需加强;(2)尺度效应、大尺度上景观背景的差异、种间差异、营养级联效应等会对景观异质性和生物多样性、生态系统服务间的关系产生显著的、综合的、交互的影响效应。未来区域农业景观中如何通过景观构建和管理措施的施行来确保生物多样性与生态系统服务供给的持续稳定仍需进一步加强以下内容的研究:景观异质性变化在时间上和功能上的影响效应及其阈值的探讨;跨尺度、多因素、多物种类群与多生态系统服务的综合及其交互作用;不同生物类群和不同生态系统服务间的权衡;景观异质性提高与有效生境面积下降及其引起的生物随机丧失间的权衡等问题。  相似文献   

14.
The factors shaping the ways in which animals use resources are a key element of conservation biology, but ecological studies on resource use typically neglect to consider how the study’s spatial scale may have affected the outcomes. We used the dryad butterfly, inhabiting xerothermic grassland and wet meadow, to test for differences in its resource use at two scales–habitat patch and landscape. Based on records of plant species composition from random points within four habitat patches and from points in 53 patches along surveyed transects, we compared the microhabitat preferences of the butterfly on the patch scale, and species occurrence and abundance patterns on the landscape scale. We distinguished four main groups of factors related to vegetation structure which affected the butterfly’s resource use—factors having similar effects on both spatial scales, factors operating primarily on one of the scales considered, factors relevant only on a single spatial scale, and factors operating on both scales but with effects differing between the two habitat types. We suggest that invertebrates may respond on two spatial levels or on only one, and conclude that larger-scale studies can meet the challenges of a sophisticated metapopulation approach and can give insight into the habitat characteristics affecting the persistence of species in landscapes. We stress the value of large-scale studies on species’ habitat preferences when planning conservation strategies, while pointing out that small-scale studies provide useful information about species ecology and behavior, especially if conducted in multiple habitats.  相似文献   

15.
This study investigates the importance of spatial landscape characteristics and habitat management on the condition of calcareous grassland in the North Down Natural Area, Kent UK. We used a digitised map of the study area containing shapefiles of all the habitats including 82 patches of calcareous grassland together with management information for each patch and data on the presence and abundance of a range of calcareous grassland indicator plant species. We defined habitat condition by presence of indicator species and used classification trees to generate models with rules for predicting habitat condition from the landscape spatial characteristics and management information. We also applied the same method to investigate the factors affecting presence or diversity of three ecological groups of positive indicator species and dominance of a negative indicator species. All the models except one showed good classification accuracy and high kappa statistic. Favourable habitat condition was predicted by presence of different types of grazing management, presence of woodland around patches of calcareous grassland and shape complexity. These results indicate that calcareous grassland in favourable condition is management-dependent but also located in less intensively managed landscapes. Unfavourable habitat condition was predicted by threat factors such as lack of management and high incidence of arable or improved grassland around patches of calcareous grassland, indicating nutrient enrichment and habitat degradation. Some of these factors also predicted high diversity of the different ecological species groups. The value of this method for predicting habitat condition and species diversity from baseline ecological data for conservation monitoring at the landscape level is emphasised.  相似文献   

16.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

17.
Current research recognizes that both the spatial and temporal structure of the landscape influence species persistence. Patch models that incorporate the spatial structure of the landscape have been used to investigate static habitat destruction by comparing persistence results within nested landscapes. Other researchers have incorporated temporal structure into their models by making habitat suitability a dynamic feature of the landscape. In this article, we present a spatially realistic patch model that allows patches to be in one of three states: uninhabitable, habitable, or occupied. The model is analytically tractable and allows us to explore the interactions between the spatial and temporal structure of the landscape as perceived by the target species. Extinction thresholds are derived that depend on habitat suitability, mean lifetime of a patch, and metapopulation capacity. We find that a species is able to tolerate more ephemeral destruction, provided that the rate of the destruction does not exceed the scale of its own metapopulation dynamics, which is dictated by natural history characteristics and the spatial structure of the landscape. This model allows for an expansion of the classic definition of a patch and should prove useful when considering species inhabiting complex dynamic landscapes, for example, agricultural landscapes.  相似文献   

18.
Habitat change and fragmentation are considered key drivers of environmental change and biodiversity loss. To understand and mitigate the effects of such spatial disturbances on biological systems, it is critical to quantify changes in landscape pattern. However, the characterization of spatial patterns remains complicated in part because most widely used landscape metrics vary with the amount of usable habitat available in the landscape, and vary with the scale of the spatial data used to calculate them. In this study, we investigate the nature of the relationship between intrinsic characteristics of spatial pattern and extrinsic scale-dependent factors that affect the characterization of landscape patterns. To do so, we used techniques from modern multivariate statistics to disentangle widely used landscape metrics with respect to four landscape components: extent (E), resolution (R), percentage of suitable habitat cover (P), and spatial autocorrelation level (H). Our results highlight those metrics that are less sensitive to change in spatial scale and those that are less correlated. We found, however, significant and complex interactions between intrinsic and extrinsic characteristics of landscape patterns that will always complicate researcher's ability to isolate purely landscape pattern driven effects from the effects of changing spatial scale. As such, our study illustrates the need for a more systematic investigation of the relationship between intrinsic characteristics and extrinsic properties to accurately characterize observed landscape patterns.  相似文献   

19.
Rethinking the conceptual foundations of habitat fragmentation research   总被引:3,自引:0,他引:3  
The conceptual foundations of habitat fragmentation research have not kept pace with empirical advances in our understanding of species responses to landscape change, nor with theoretical advances in the wider disciplines of ecology. There is now real debate whether explicit recognition of ‘habitat fragmentation’ as an over‐arching conceptual domain will stimulate or hinder further progress toward understanding and mitigating the effects of landscape change. In this paper, we critically challenge the conceptual foundations of the discipline, and attempt to derive an integrated perspective on the best way to advance mechanistic understanding of fragmentation processes. We depict the inherent assumptions underlying the discipline as a ‘conceptual phase space’ of contrasting false dichotomies in fragmentation ‘problem space’. In our opinion, the key determinant of whether ‘habitat fragmentation’ can remain a cohesive framework lies in the concept of ‘interdependence’: 1) interdependence of landscape effects on species and 2) interdependence of species responses to landscape change. If there is non‐trivial interdependence among the various sub‐components of habitat fragmentation, or non‐trivial interdependence among species responses to landscape change, then there will be real heuristic value in ‘habitat fragmentation’ as a single conceptual domain. At present, the current paradigms entrenched in the fragmentation literature are implicitly founded on strict independence of landscape effects (e.g. the debate about the independent effects of habitat loss versus fragmentation per se) and strict independence of species responses (e.g. the individualistic species response models underpinning landscape continuum models), despite compelling evidence for interdependence in both effects and responses to fragmentation. We discuss how strong ‘interdependence’ of effects and responses challenges us to rethink long‐held views, and re‐cast the conceptual foundations of habitat fragmentation in terms of spatial context‐dependence in the effects of multiple interacting spatial components of fragmentation, and community context‐dependence in the responses of multiple interacting species to landscape change.  相似文献   

20.
Aim This study addresses how species resolve environmental differences into biological habitats at multiple, interacting spatial scales. How do patterns of local habitat use change along an elevation gradient? How do patterns of local habitat partitioning interact with partitioning at a landscape scale? Location Northern and southern Lesser Antilles islands, West Indies. Methods We document how Anolis Daudin, 1802 lizards partition habitat locally at sites along a landscape‐scale elevation gradient. We examine habitat partitioning both with and without interspecific interactions in the predominately flat northern Lesser Antilles islands and in the more mountainous southern islands. Results Anoles partition local habitat along perch‐height and microclimate axes. Northern‐group sympatric anoles partition local habitat by perch height and have overlapping distributions at the landscape scale. Southern‐group sympatric anoles partition local habitat by microclimate and specialize in particular habitats at the landscape scale. In both the northern and southern groups, species use different perch heights and microclimates only in areas of species overlap along the elevation gradient. Main conclusions We demonstrate the interaction between local‐ and landscape‐scale habitat partitioning. In the case of microclimate partitioning, the interaction results from the use of thermal physiology to partition habitat at multiple scales. This interaction prompts the question of whether habitat partitioning developed ‘local‐out’ or ‘landscape‐in’. We pose this dichotomy and present a framework for its resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号