首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Analysis of the binding of phenylalanine to phenylalanyl-tRNA synthetase   总被引:1,自引:0,他引:1  
Using the complete rate equation for the PPi-ATP exchange reaction at equilibrium, the dissociation constants of phenylalanine (10?5m), phenylalanine butyl ester (8 × 10?5m), benzyl alcohol (6 × 10?4m), phenylalaninol (2 × 10?4m), hydrocinnamic acid (3 × 10?3m) and glycine (>1 m) with the phenylalanyl-tRNA synthetase (Escherichia coli K12) were determined. Taking the model of Koshland (1962) for the estimation of the configurational free energy change due to proximity and orientation, and decomposing the process of binding into several thermodynamic steps, the contribution to binding of the benzyl group, glycine unit, protonated amino group, carboxylate group and joint interactions were estimated. The results are: (1) the standard free energy contributions for binding phenylalanine are benzyl group (?8.2 kcal/mol), glycine unit (?2.5 kcal/mol), protonated amino group (?0.8 kcal/mol) and carboxylate group (1 kcal/mol). (2) The standard free energy change due to the change in the interaction between the protonated amino group and carboxylate group when they are transferred from the aqueous environment to the enzyme environment is ?2.7 kcal/mol. (3) A dissociation constant for glycine of 7.5 m is calculated without the hypothesis that a conformational change occurs in the enzyme when the benzyl unit of phenylalanine binds, permitting an interaction of the enzyme with the protonated amino and/or carboxylate groups.The detection of E·AA2 and E·ATP shows that a sequential addition of substrates is not necessary for binding. A comparison of the dissociation constants of E·AA (10?5m), E·ATP (1.5 × 10?3m), E·PP (5.5 × 10?4m), E·I (8 × 10?5m) and the mixed complexes E·I·ATP (6 × 10?8m2), E·I·PP (5 × 10?8m2) and E·AA·PP (7 × 10?9m2), with phenylalanine butyl ester as the inhibitor, indicates no strong interaction between the binding of ATP or PPi with the binding of phenylalanine.  相似文献   

2.
Adenylyl imidodiphosphate (AMP-PNP), and analog of adenosine triphosphate (ATP), is a potent competitive inhibitor of mitochondrial ATPase activity. It inhibits both the soluble oligomycin-insensitive ATPase (Ki = 9.2 × 10?7 M) and the bound oligomycin-sensitive APTase (Ki = 1.3 × 10?6 M). ATPase activity of inside-out submitochondrial preparations are more sensitive to AMP-PNP in the presence of an uncoupler (Ki = 2.0 × 10?7 M). Mitochondrial ATP-dependent reactions (reversed electron transfer and potassium uptake) do not proceed if ATP is replaced with AMP-PNP; however, the analog does affect these systems. Oxidative phosphorylation of whole mitochondria and submitochondrial preparations were unaffected by AMP-PNP.  相似文献   

3.
Potato tuber phosphofructokinase was purified 19·.6-fold by a combination of ethanol fractionation and DEAE-cellulose column chromatography. The enzyme was very unstable; its pH optimum was 8·0. Km for fructose-6-phosphate, ATP and Mg2+ was 2·1 × 10?4 M, 4·5 × 10?5 M and 4·0 × 10?4 M respectively. ITP, GTP, UTP and CTP can act as phosphate donors, but are less active than ATP. Inhibition of enzyme activity by high levels of ATP was reversed by increasing the concentration of fructose-6-phosphate; the affinity of enzyme for fructose-6-phosphate decreased with increasing concentration of ATP. 5′-AMP, 3′,5′-AMP, 3′-AMP, deoxy AMP, UMP, IMP, CMP, GMP, ADP, CDP, GDP and UDP did not reverse the inhibition of enzyme by ATP. ADP, phosphoenolpyruvate and citrate inhibited phosphofructokinase activity but Pi did not affect it. Phosphofructokinase was not reactivated reversibly by mild change of pH and addition of effectors.  相似文献   

4.
—The hydrolysis of ThTP by rat brain membrane-bound ThTPase is inhibited by nucleoside diphosphates and triphosphates. ATP and ADP are most effective, reducing hydrolysis by 50% at concentrations of 2 × 10?5m and 7·5 × 10?5m respectively. Nucleoside monophosphates and free nuclcosides as well as Pi have no effect on enzyme activity. ThMP and ThDP also fail to inhibit hydrolysis in concentrations up to 5 × 10?3m . Non-hydrolysable methylene phosphate analogs of ATP and ADP were used in further kinetic studies with the ThTPase. The mechanism of inhibition by these analogs is shown to be of mixed non-competitive nature for both compounds. An observed Ki, of 4 × 10?5m for the ATP analog adenosine-PPCP and 9 × 10?5m for the ADP analog adenosine-PCP is calculated at pH 6·5. Formation of the true enzyme substrate, the [Mg2+. ThTP] complex, is not significantly affected by concentrations of analogs producing maximal (>95%) inhibition of enzyme activity. Likewise the relationships between pH and observed Km and pH and Vmax are not shifted by the presence of similar concentrations of inhibitor.  相似文献   

5.
Two l-lactate dehydrogenase isoenzymes and one dl-lactate dehydrogenase could be separated from potato tubers by polyacrylamide-gel electrophoresis. The enzymes are specific for lactate, while β-hydroxybutyric acid, glycolic acid, and glyoxylic acid are not oxidized. Their pH optima are pH 6.9 for the oxidation and 8.0 for the reduction reaction.The Km values for l-lactate for the two isoenzymes are 2.00 × 10?2 and 1.82 × 10?2, m. In the reverse reaction the affinities for pyruvate are 3.24 × 10?4 and 3.34 × 10?4, m. Both enzymes have similar affinities for NAD and NADH (3.00 × 10?4; 4.00 × 10?4, and 8.35 × 10?4; 5.25 × 10?4, m).The dl-lactate oxidoreductase may transfer electrons either to NAD or N-methyl-phenazinemethosulfate. The Km values of this enzyme for l-lactate are 4.5 × 10?2, m and for d-lactate 3.34 × 10?2, m. Its affinity for pyruvate is 4.75 × 10?4, m. The enzyme is inhibited by excess NAD (Km = 1.54 × 10?4, M) and has an affinity toward NADH (Km = 5.00 × 10?3, M) which is about one tenth of that of the two isoenzymes of l-lactate dehydrogenase.  相似文献   

6.
In intact mitochondria a stoichiometric coupling exists between cytochrome a3 and the hydrolysis of adenosine triphosphate (ATP). In each case the modification of one cytochrome a3 (measured as a spectral change) is coupled to the hydrolysis of one ATP molecule. When both cytochromes a3 and a are reduced the measured equilibrium constant is 0.06 m?1 but this constant is 103 M?1 when both cytochromes are oxidized. When the sixth ligand for cytochrome a3 is an externally added ligand (HCN, H2S, CO, NO) the equilibrium constant is different for each ligand, suggesting that the ATP induced modification is of the fifth ligand but that it is energetically dependent on the chemical nature of the sixth ligand. The measured half-reduction potentials for cytochromes a3 and bT are dependent on the concentrations of added ATP, adenosine diphosphate (ADP), and orthophosphate. The relationship is consistent with a ligand exchange mechanism in which the ligand on the cytochrome is dependent on the phosphate potential (ATPADP × Pi). The equilibrium constants obtained by the ligand exchange treatment of the Em values for cytochrome a3 are consistent with those obtained by direct measurement of the equilibrium constants for the spectrally measured changes.  相似文献   

7.
l-α-Hydroxyacid oxidase and glycolate oxidase have been partially purified from rat livers and found to be identical, judging by substrate specificities, Km values for certain substrates and coenzyme (FMN), activation energy, inhibition rates by various reagents and pH optimum. Km values are as follows; glycolate, 2.4 × 10?4m; l-α-hydroxyisocaproate, 1.26 × 10?3; glyoxylate, 1.41 × 10?4m; and FMN, 1.13 × 10?6m. Km values for glycolate and FMN are one-tenth and one-twentieth the literature values for hepatic glycolate oxidase. Sucrose density gradient centrifugation establishes that this enzyme is located in hepatic peroxisomes.  相似文献   

8.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

9.
UDP-glucose:coniferyl alcohol glucosyltransferase was isolated from 10-day-old, darkgrown cell suspension cultures of Paul's scarlet rose. The enzyme was purified 120-fold by (NH4)2SO4 fractionation and chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-100. The enzyme has a pH optimum of 7.5 in Tris-HCl buffer, required an -SH group for activity, and is inhibited by ?-chloromercuribenzoate and EDTA. Its molecular weight is estimated to be 52,000. The enzyme is specific for the glucosylation of coniferyl alcohol (Km 3.3 × 10?6 M) and sinapyl alcohol (Km 5.6 × 10?6 M). With coniferyl alcohol as substrate the apparent Km value for UDP-glucose is 2 × 10?6m. The enzyme activity can be detected in a number of callus-tissue and cell-suspension cultures. The role of this enzyme is believed to be to catalyze the transfer of glucose from UDPG to coniferyl (or sinapyl) alcohol as storage intermediates in lignin biosynthesis.  相似文献   

10.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

11.
The initial velocity pattern has been determined for uridine-cytidine kinase purified from the murine mast cell neoplasm P815. With either uridine or cytidine as phosphate acceptor, and ATP as phosphate donor, the pattern observed was one of intersecting lines, ruling out a ping-pong reaction mechanism, and suggesting that the reaction probably proceeds by the sequential addition of both substrates to the enzyme to form a ternary complex, followed by the sequential release of the two products. This pattern was obtained whether the reaction was run in 0.01 m potassium phosphate buffer, pH 7.5, or in 0.1 m Tris-HCl, pH 7.2. When analyzed by the Sequen computer program, the data indicated an apparent Km of the enzyme for uridine of 1.5 × 10?4m, an apparent Km for cytidine of 4.5 × 10?5m, and a Km for ATP, with uridine or cytidine as phosphate acceptor, of 3.6 × 10?3m or 2.1 × 10?3m, respectively. The V was 1.83 μmol phosphorylated/min/mg enzyme protein for the uridine kinase reaction and 0.91 μmol for the cytidine kinase reaction.  相似文献   

12.
Formyltetrahydrofolate synthetase (E. C. 6. 3. 4. 3) was found in fresh spinach leaves and purified about 60-fold by treatments of ammonium sulfate, protamine sulfate, dialysis, and DEAE-cellulose column chromatography. Some properties of the enzyme were investigated. Optimum pH was found to be 7.5, and optimum temperature was observed to be at 37°C. In the enzyme reaction, FAH4 and formate were required specifically as the substrates, and Mg++ and ATP were essential components. The Michaelis constants for dl-FAH4, formate, ATP and magnesium chloride were 1.7×10?3 m, 1.7×10?2 m, 4.1×10?4 m and 3.3×10?3 m, respectively. The primary product formed in the reaction catalyzed by the enzyme was suggested as N10-formyl-FAH4 spectrophotometrically. It was observed that the enzyme also catalyzed the reverse reaction. The possible role of the enzyme in plants was discussed.  相似文献   

13.
The influence of progesterone and four other steroids on the intrinsic fluorescence of progesterone-binding globulin was investigated. The corresponding effect of progesterone on α1-acid glycoprotein was also studied. The intrinsic fluorescence of the progesterone-binding globulin and of α1-acid glycoprotein was quenched by about 60 and 17%, respectively, upon forming stoichiometric complexes with progesterone. Graphical analysis of fluorescence quenching titrations with progesterone gave affinity constants at 23 °C of 2 × 109m?1 for progesterone-binding globulin and 1 × 106m?1 for α1-acid glycoprotein. With progesterone-binding globulin, affinity constants of 1 × 109m?1 were determined for desoxycorticosterone, 1 × 108m?1 for testosterone, and 2 × 106m?1 for cortisol. The fluorescence quenching of PBG by 5-pregnen-3β-ol-20-one, 5α-pregnanedione, and 5β-pregnanedione, steroids lacking the Δ4-3-keto grouping, was too small to be evaluated; however, binding of the pregnanediones to progesterone-binding globulins was demonstrated when the progesterone-progesterone-binding globulin complex was “unquenched” as a result of competitive displacement of progesterone by addition of the pregnanediones. The quenching phenomenon is assumed to be mainly due to radiationless transfer from protein to the near uv (n → π1) absorption band of steroids containing the Δ4-3-keto chromophore.  相似文献   

14.
Protein methylase II (S-adenosylmethionine:protein—carboxyl methyltrans-ferase), which modifies free carboxyl residues of protein, was purified from both rat and human blood, and properties of the enzymes were studied. The pH optima for the reaction were dependent on the substrate proteins used; pH 7.0 was found with endogenous substrate, 6.1 with plasma, 6.5 with γ-globulin, and 6.0 with fibrinogen. The molecular weight of the enzymes from both rat and human erythrocytes were identical (25,000 daltons) determined by Sephadex G-75 chromatography. Partially purified enzyme from rat erythrocytes showed three peaks on electrofocusing column at pH 4.9, 5.5 and 6.0. The Km values of the enzymes from rat and human erythrocytes showed 3.1 × 10?6m and 1.92 × 10?6m at pH 6.0, 1.96 × 10?6m and 1.78 × 10?6m at pH 7.2, respectively, for S-adenosyl-l-methionine. It is also found that S-adenosyl-l-homocysteine is a competitive inhibitor for protein methylase II with Ki value of 1.6 × 10?6m.  相似文献   

15.
J. Michael Gould 《BBA》1975,387(1):135-148
1. The Photosystem I-mediated transfer of electrons from diaminodurene, diaminotoluene and reduced 2,6-dichlorophenolindophenol to methylviologen is optimal at pH 8–8.5, where phosphorylation is also maximal. In the presence of superoxide dismutase, the efficiency of phosphorylation rises from ? 0.1 at pH 6.5 to 0.6–0.7 at pH 8–8.5, regardless of the exogenous electron donor used.2. The apparent Km (at pH 8.1) for diaminodurene is 6·10?4 M and for diaminotoluene is 1.2·10?3 M. The concentrations of diaminodurene and diaminotoluene required to saturate the electron transport processes are > 2 mM and > 5 mM, respectively. At these higher electron donor concentrations the rates of electron transport are markedly increased by phosphorylation (1.5-fold) or by uncoupling conditions (2-fold).3. Kinetic analysis of the transfer of electrons from reduced 2,6-dichlorophenolindophenol (DCIPH2) to methylviologen indicates that two reactions with very different apparent Km values for DCIPH2 are involved. The rates of electron flux through both pathways are increased by phosphorylation or uncoupling conditions although only one of the pathways is coupled to ATP formation. No similar complications are observed when diaminodurene or diaminotoluene serves as the electron donor.4. In the diaminodurene → methylviologen reaction, ATP formation and that part of the electron transport dependent upon ATP formation are partially inhibited by the energy transfer inhibitor HgCl2. This partial inhibition of ATP formation rises to about 50% at less than 1 atom of mercury per 20 molecules of chlorophyll, then does not further increase until very much higher levels of mercury are added.5. It is suggested that exogenous electron donors such as diaminodurene, diaminotoluene and DCIPH2 can substitute for an endogenous electron carrier in donating electrons to cytochrome f via the mercury-sensitive coupling site (Site I) located on the main electron-transporting chain. If this is so, there would seem to be no reason for postulating yet another coupling site on a side branch of the electron transport chain in order to account for cyclic photophosphorylation.  相似文献   

16.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 × 10?8M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5×10?8M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+ Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both and Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+ Preincubation of enzyme with 15 μM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 × 10?7M propranolol and 5 × 10?8M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 × 10?5M coenzyme A in combination with 5 × 10?8M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

17.
Experiments were designed to test for functional differences which might shed light on the differences in actin-activated ATPase activities recently reported for myosin subfragments-1 bearing different light chains. By using the method of A. G. Weeds and R. S. Taylor (1975, Nature (London)257, 54), two types of subfragment-1 (S-1) from myosin of rabbit fast skeletal muscle were prepared: (S-1)·A1 and (S-1)·A2 bearing, respectively, the alkali-1 and alkali-2 light chains. (In agreement with the findings of these investigators, actin enhanced the ATPase activity of (S-1)·A1 more than that of (S-1)·A2 at lower actin concentrations.) Through use of time-resolved fluorescence depolarization techniques, the affinity constants for the binding of the two types of S-1 to F-actin in the absence of ATP were found to be very similar: 3.4 ± 0.3 × 106m?1 (N = 10) for (S-1)·A1 and 3.9 ± 0.2 × 106m?1 (N = 7) for (S-1)·A2 of one preparation, and 6.4 ± 0.2 × 106m?1 (N = 6) for (S-1)·A1 and 7.7 ± 0.5 × 106m?1 (N = 12) for (S-1)·A2 of another preparation (pH 7.0, 25 °C, 0.28 m KCl, 1.5 mm MgCl2, 0.5 mm ethylene glycol bis (β-aminoethyl ether) N,N′-tetracetic acid, 10 mm imidazole, and 0.1 mmN-tris (hydroxymethyl) methyl-2-aminoethane sulfonate). The affinity constants for the two species of S-1 and actin also have a similar dependence on ionic strength and are not affected by addition of 0.6 mm CaCl2 to the above solution. The CaATPase (or the CaITPase) activities of the two species of S-1 show the same pH dependence.  相似文献   

18.
A biochemical assay for the measurement of ATP synthesis coupled to electron transport in the presence of adenylate kinase was developed as an alternative to using the conventional Clark-type oxygen electrode. The assay utilizes P1,P5-di-(adenosine-5′)-pentaphosphate which is shown to be a competitive inhibitor with MgADP for rat liver mitochondrial adenylate kinase (Ki = 7.04 × 10?8m) and was found to have no effect on oxidative phosphorylation of either intact mitochondria or submitochondrial particles.  相似文献   

19.
The magnesium ion-dependent equilibrium of vacant ribosome couples with their subunits
70 S?k?1k150 S+30S
has been studied quantitatively with a novel equilibrium displacement labeling method which is more sensitive and precise than light-scattering. At a concentration of 10?7m, tight couples (ribosomes most active in protein synthesis) dissociate between 1 and 3 mm-Mg2+ at 37 °C with a 50% point at 1.9 mm. The corresponding association constants Ka′ are 5.1 × 105m?1 (1 mm-Mg2+), 3.5 × 107m?1 (2 mm), and 1.2 × 109m?1 (3 mm), about five orders of magnitude higher than the Ka′ value of loose couples studied by Spirin et al. (1971) and Zitomer & Flaks (1972).In this range of Mg2+ concentrations (37 °C, 50 mm-NH4+) the rate constants depend exponentially and in opposite ways on the Mg2+ concentration: k1 = 2.2 × 10?3s?1, k?1 = 7.7 × 104m?1s?1 (2mm-Mg2+); k1 = 1.5 × 10?4s?1, k?1 = 1.7 × 107m?1s?1 (5 mm-Mg2+). Under physiological conditions (Mg2+ ~- 4 mm, ribosome concn ~- 10?7m), the equilibrium strongly favors association and the rate of exchange is slow (t12 ~- 10 min). In the range of dissociation (2 mm-Mg2+), association of subunits proceeds without measurable entropy change and hence ΔGO = ΔHO. The negative enthalpy change of ΔHO = ? 10 kcal suggests that association of subunits involves a shape change.Below a critical Mg2+ concentration (~- 2 mm), the 50 S subunits are converted irreversibly into the b-form responsible for the transition to loose couples. The results are compatible with two classes of binding sites, one class binding Mg2+ non-co-operatively and contributing to the free energy of association by reduction of electrostatic repulsion, and another class probably consisting of hydrogen bonds between components at opposite interfaces whose critical spatial alignment rapidly denatures in the absence of stabilizing magnesium ions.  相似文献   

20.
Tightly coupled mitochondria isolated from Ehrlich ascites tumor cells accumulate and retain high concentrations of Ca2+ in the presence of ATP for periods up to at least 20 min at 25 °C. The presence of inorganic phosphate up to 20 mm does not prevent such Ca2+ retention. The tumor mitochondria accumulate Ca2+ in the presence of succinate as an energy source but lose the Ca2+ after 1–2 min. Addition of ATP (Km approx 1 mm) to the incubation medium after Ca2+ release, induces reaccumulation of the ion. Thus, the ability of the tumor mitochondria to retain Ca2+ differs markedly from that of rat liver mitochondria and is seen as being of potential biological significance to the unique metabolic behavior of the ascites tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号