首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozone depletion by anthropogenic gases has increased the atmospheric transmission of solar ultraviolet-B radiation (UV-B, 280-315 nm). There is a logical link between the natural defenses of terrestrial and marine organisms against UV radiation and the prevention of UV-induced damage to human skin. UV light degrades organic molecules such as proteins and nucleic acids, giving rise to structural changes that directly affect their biological function. These compounds offer the potential for development of novel UV blockers for human use. The biological role of mycosporine-like amino acids (MAAs) and scytonemin as a defense against solar radiation in organisms, together with their structure, synthesis, distribution, regulation and effectiveness, are reviewed in this article. This review points to the role of MAAs as a natural defense against UV radiation.  相似文献   

2.
The terrestrial ecosystem of Antarctica are among the most extreme on earth, challenging the communities and making their existence difficult by rapidly increasing annual summer influx of solar ultraviolet radiations (UV-R), extremely cold conditions and lesser availability of nutrients. Spring time ozone depletion is due to release of chlorofluorocarbons in the earth atmosphere and is a serious cause of concern among environmentalists. Antarctic continent is mostly dominated by cryptogamic plants with limited distribution in different parts of the icy continent however; their distribution is mostly confined to Sub-Antarctic region. By the virtue of light requirement, cryptogams are exposed to extreme seasonal fluctuation in photosynthetically active radiation (PAR), and ultraviolet (UV) radiation which are closely associated with photosynthetic pigments in photoautotrophic organisms. Antarctic cryptogams cope up the stress imposed by UV radiation by the development of efficient systems for repairing damage by synthesis of screening compounds such as UV-B absorbing pigments and anthocyanin compounds. A major part of the UV absorbing compounds are appeared to be constitutive in lichens which are usnic acid, perlatolic acid and fumarphotocetraric acid which is particularly induced by UV-B. Secondary metabolites such as phenolics, atranorin, parietin and melanin also enhance the plant defense, by different molecular targets in specific solar irradiance and potential for increased antioxidative protection to UV induced vulnerability.  相似文献   

3.
Zavala  Jorge A.  Ravetta  Damian A. 《Plant Ecology》2002,161(2):185-191
UV-B radiation is absorbed effectively by nucleic acids and other sensitive targets, potentially causing harmful photochemical effects. Protection against UV-B radiation may be afforded by flavonoids and other phenolics, which absorb strongly in the UV region, but little is known about the role played by other compounds, such as terpenes. Grindelia chiloensis, native of Patagonia (Argentina), can accumulate as much as 25% resin (terpenes) in its leaves. The present investigation was carried out to test the effect of solar UV-B radiation on the allocation of photoassimilates to biomass and terpenes. Exposure to UV-B radiation reduced whole plant biomass, plant height and leaf area, and increased leaf thickness and resin accumulation in Grindelia chiloensis. Higher absorbance was found for refined resin in the UV-B waveband from plants grown under solar UV-B radiation than plants without UV-B radiation. These chemical and structural changes could protect the plant from UV radiation, and may help elucidate the importance of epicuticular resins for a species as G. chiloensis native to an environment with maximum daily integrated values of solar UV-B irradiance.  相似文献   

4.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

5.
There is an increasing likelihood that the solar UV-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar UV-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar UV-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar UV-B. We have investigated the dynamics of biological reactions to stimulated solar UV-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar UV-B effects, even organisms which specifically reduce their UV-B exposure would encounter additional stress if ozone depletion does occur.  相似文献   

6.
Abstract The effects of tropical solar radiation on the motility of the cyanobacteria Anabaena variabilis, Oscillatoria tenuis and two strains of Phormidium uncinatum were studied in Ghana (4.30°N). The percentages of motile filaments were drastically reduced by unfiltered solar radiation. Covering the organisms with various long pass or band pass filters (WG320, GG395 or UG5) revealed that the UV-B, UV-A and visible light components of the solar spectrum were all effective in impairing motility in these organisms. Only partial recovery was observed and only after short exposure times.  相似文献   

7.
Boothroyd  Ian K.G.  Etheredge  M. Kay  Green  John D. 《Hydrobiologia》2002,469(1-3):23-32
Solar ultraviolet radiation both degrades and alters the quality of natural organic matter as well as organic pollutants in surface waters. Still, it is only recently that this indirect influence of photochemical processes on aquatic organisms (e.g. bacteria) has received attention. We experimentally studied the photochemical degradation of three PAHs; anthracene, phenanthrene and naphthalene, in water. Anthracene and phenanthrene were rapidly photodegraded (half-lives of 1 and 20.4 hours, respectively), while the photochemical half-life of naphthalene exceeded 100 hours. Hence photodegradation is most likely a less important removal mechanism for the latter compound. The influence of humic substance additions (0–25 mg C l–1) on degradation rates was also assessed, and while photodegradation of anthracene was not affected by these additions, phenanthrene photodegradation slowed down considerably at the higher humic substance concentrations. These differential responses of anthracene and phenanthrene can at least partially be explained by differences in the spectral absorbance of the two compounds. In contrast, ionic strength did not have any appreciable effect on the estimated photodegradation rates of either compound. The influence of PAHs on growth of aquatic bacteria was assessed in dilution cultures with and without exposure to PAHs and simulated solar UV radiation. Separately, neither PAHs nor simulated solar UV radiation had any effect on bacterial growth. However, when combined, a marked inhibition of bacterial growth could be observed in water obtained from a clearwater lake. This could be due to the formation of toxic photodegradation products such as quinones (detected in our incubations) or other reactive species that affect bacteria negatively. Hence, in addition to influencing the fate and persistence of PAHs in aquatic systems, solar radiation and natural organic matter and regulate the toxicity of these compounds to indigenous micro-organisms.  相似文献   

8.
Tropical regions receive the highest level of global solar ultraviolet (UV) radiation especially UV-B (280-320 nm). The average daily dose of the UV-B radiation in Madurai, South India (10°N) is 10 kJ m-2. This is approximately 50% more than the average daily UV-B radiation in many European countries. A field study was conducted using selective filters to remove either the UV-B (< 320 nm) or UV-B/A (<400 nm) of the solar spectrum, and the effects were followed inCyamopsis tetragonoloba, Vigna mungo, andVigna radiata to determine their sensitivity to UV. When compared to ambient radiation, exclusion of solar UV-B increased the seedling height, leaf area, fresh weight and dry weight and the crop yield by 50% in the case ofCyamopsis, and the extent of such increase was slightly less under UV-B/A exclusion. InV. mungo a significant reduction was seen in solar UV excluded plants whileV. radiata was found to be unaffected.  相似文献   

9.
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet‐B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron‐deficient cyanobacteria respond to UV‐B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV‐B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV‐B radiation under iron‐deficient conditions, but were less affected under iron‐replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV‐B radiation under iron‐deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV‐B radiation under iron‐replete conditions. These results indicate that iron‐deficient cyanobacteria are more susceptible to enhanced UV‐B radiation. Therefore, UV‐B radiation probably plays an important role in influencing primary productivity in iron‐deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron‐deficient regions around the world.  相似文献   

10.
Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.  相似文献   

11.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

12.
Marine organisms are seen as a source of novel drugs and the discovery of new pharmaceutical is increasingly in demand. Cyanobacteria are regarded as a potential target for this as antibacterial, antiviral, antifungal, algicide and cytotoxic activities have been reported in these organisms. They have been identified as a new and rich source of bioactive compounds belonging to diversified groups. Radiation in the UV-B range interferes with various metabolic reactions by generating free radicals and active oxygen species. These deleterious compounds are inactivated by antioxidants. Among them are the carotenoids and phycocyanin which protect against photodynamic action in different ways. Stress plays an important role in the production of bioactive metabolites from organisms. Synechococcus spp. PCC7942 was studied for antibacterial activity against various pathogenic bacteria resistant to a number of available antibiotics after being exposed to UV-B radiation. The antibacterial activity of Synechococcus spp. PCC7942 was studied on five potent skin pathogens. The highest antibacterial activity was seen the methanol extracts of 24 h UV-B exposed cultures of Synechococcus spp. PCC7942. It can be concluded that there was moderate antibacterial activity. Results showed stress, solvent and dose-dependent activity. This antibacterial activity might be due to the enhanced synthesis of carotenoids and phycocyanin under UV-B stress. The purpose of the present study was to relate the inhibitory effects of the cyanobacterial compounds specifically on skin pathogens with exposure to UV-B radiation as UV protecting compounds are already reported in these organisms.  相似文献   

13.
李伟  杨雨玲  黄松  董丽丽  潘健  李亚鹤  周月  高坤山 《生态学报》2015,35(23):7615-7624
为了比较研究酸雨与紫外辐射对淡水水体常见藻华蓝藻的生理学影响,选取铜绿微囊藻(Microcystis aeruginosa)产毒(FACHB-905)与不产毒(FACHB-469)株系作为实验材料,通过人工模拟酸雨,研究了不同p H处理后2藻株的光合生理变化以及对紫外辐射的敏感性的异同。实验设置3个p H梯度,p H7.10为对照组(正常培养基培养的藻体),两模拟酸雨处理组(p H5.65和p H4.50);两种辐射处理,可见光处理(PAR)以及全波长辐射处理(PAB)。研究结果表明,905藻株细胞粒径在各p H处理下都要显著高于469藻株,模拟酸雨处理显著降低了两藻株细胞的平均粒径及体积,但叶绿素含量显著提高;酸雨处理同时也引起细胞死亡率的增加,表现为藻体有效光化学效率显著降低,生长速率显著受到抑制,低p H下呈负增长,且这种抑制程度在469下更为显著。高的可见光以及紫外辐射处理,使两株系有效光化学效率随p H的降低而呈降低趋势,其中469藻株降低至更低的水平,且高光辐射以及紫外诱导的抑制率要显著高于905藻体,这可能与469藻株较低的光保护色素有关(较低的类胡萝卜素以及紫外吸收物质)。在未来全球变化背景下,不同种类的浮游植物对环境变化的响应及适应能力不同,可改变水体的群落结构和种群丰度,铜绿微囊藻905较469较强的耐受酸雨以及紫外辐射的能力,可能会使该株系在竞争力上占据优势。  相似文献   

14.
Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (37-68°N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plant metabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of anova and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames on UV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses.  相似文献   

15.
紫外线辐射对生物体危害日趋严重,逐渐引起了人们的重视.由于蓝藻在生物进化中的特殊性和在生态系统中的重要性,用于研究UV-B对生物体的影响具有诸多优势,目前国内关于UV-B对蓝藻的影响相关报道较少.本文介绍了近年来国外该领域的相关研究,主要包括UV-B对蓝藻生物量、生理效应,特别是光合作用等方面的影响,同时着重介绍了蓝藻中的紫外吸收物质的研究现状,并进一步探讨了其应用情况.  相似文献   

16.
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O(2) evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.  相似文献   

17.
Antonelli  F.  Grifoni  D.  Sabatini  F.  Zipoli  G. 《Plant Ecology》1997,128(1-2):127-136
During the last few decades many experiments have been performed to evaluate the responses of plants to enhanced solar UV-B radiation (280–320 nm) that may occur because of stratospheric ozone depletion; most of them were performed in controlled environment conditions where plants were exposed to low photosynthetically active radiation (PAR) levels and high UV-B irradiance. Since environmental radiative regimes can play a role in the response of plants to UV-B enhancement, it appears doubtful whether it is valid to extrapolate the results from these experiments to plants grown in natural conditions. The objective of this work was to evaluate the effects on physiology and morphology of a bean (Phaseolus vulgaris L.) cultivar Nano Bobis, exposed to supplemental UV radiation in the open-air. UV-B radiation was supplied by fluorescent lamps to simulate a 20% stratospheric ozone reduction. Three groups of plants were grown: control (no supplemental UV), UV-A treatment (supplementation in the UV-A band) and UV-B treatment (supplemental UV-B and UV-A radiation). Each group was replicated three times. After 33 days of treatment plants grown under UV-B treatment had lower biomass, leaf area and reduced leaf elongation compared to UV-A treatment. No significant differences were detected in photosynthetic parameters, photosynthetic pigments and UV-B absorbing compounds among the three groups of plants. However, plants exposed to UV-A treatment showed a sort of 'stimulation' of their growth when compared to the control. The results of this experiment showed that plants may be sensitive to UV-A radiation, thus it is difficult to evaluate the specific effects of UV-B (280–320 nm) radiation from fluorescent lamps and it is important to choose the appropriate control. Environmental conditions strongly affect plant response to UV radiation so further field studies are necessary to assess the interaction between UV-B exposure and meteorological variability.  相似文献   

18.
Effects of UV-B radiation on near-surface zooplankton of puget sound   总被引:2,自引:0,他引:2  
Summary An increase in incident solar ultraviolet irradiation, resulting from possible deterioration of the stratospheric ozone layer, would have important biological effects. Though the oceans are relatively opaque to UV radiation, compared to visible light, increases in incident UV may affect organisms living within the first few meters of the sea surface.Shrimp larvae, crab larvae, and euphausids were exposed to various low levels of simulated solar UV radiation (UV-B, 290–315 nm) under laboratory conditions. Comparisons between solar and artificial spectra were based on spectroradiometric measurements converted to erythemally effective irradiance. These zooplankton tolerated UV-B irradiance levels up to threshold levels with no significant reduction in survival or developmental rates compared to control organisms. Beyond the threshold levels, activity, development, and survival rapidly declined. The apparent UV thresholds are near present incident UV levels.Observed survival threshold levels for each experimental group were superimposed on seasonal solar incident UV levels at the experimental site. These threshold levels appeared to be exceeded by median ambient UV levels late in the season of surface occurrence of each species. UV increases resulting from ozone depletion may significantly shorten this season. Although the apparent impact would be lessened by the decrease in UV with depth, irreversible detrimental effects would probably occur before reported survival thresholds were exceeded.Contribution No. 1107 from the Department of Oceanography, University of Washington, Seattle, WA 98195, USA  相似文献   

19.
Abstract The effects of artificial and solar UV-B radiation on the gravitactic (formerly called geotactic) orientation of the freshwater dinoflagellate Peridinium gatunense were measured under artificial UV-B radiation and in a temperature-controlled growth chamber under solar radiation in Portugal. Circular histograms of gravitaxis show the impairement of orientation after UV irradiation. The degree of orientation, quantified using the Rayleigh test and top quadrant summation, decreased as the exposure time to the radiation prolonged. The effects of artifical UV-B radiation on orientation are stronger than those of solar radiation, probably because the radiation source emits higher fluence rates below 300 nm than found in solar radiation. After UV radiation, the gravitactic orientation under artificially increased acceleration at 2 g was drastically affected.  相似文献   

20.
平流层臭氧破坏导致地球表面紫外辐射(主要是UV-B)增强逐渐受到人们重视。由于蓝藻在生态系统中的重要性和在生物进化过程中的特殊性,用于研究UV-B对生物体的影响具有诸多优势。目前国内关于UV-B与蓝藻的研究报道较少,所以本文介绍了近年来国外该领域的相关研究,主要包括UV-B对蓝藻生物量、光合机构以及固氮等方面的影响,同时着重介绍了蓝藻对UV-B的适应策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号