首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two mutations known to affect recombination in a recB recC sbsBC strain, recJ284::Tn10 and recN262, were examined for their effects on the postreplication repair of UV-damaged DNA. The recJ mutation did not affect the UV radiation sensitivity of uvrB and uvrB recF cells, but it increased the sensitivity of uvrB recN (approximately 3-fold) and uvrB recB (approximately 8-fold) cells. On the other hand, the recN mutation did not affect the UV sensitivity of uvrB recB cells, but it increased the sensitivity of uvrB (approximately 1.5-fold) and uvrB recF (approximately 4-fold) cells. DNA repair studies indicated that the recN mutation produced a partial deficiency in the postreplication repair of DNA double-strand breaks that arise from unrepaired daughter strand gaps, while the recJ mutation produced a deficiency in the repair of daughter strand gaps in uvrB recB cells (but not in uvrB cells) and a deficiency in the repair of both daughter strand gaps and double-strand breaks in uvrA recB recC shcBC cells. Together, these results indicate that the recJ and recN genes are involved in different aspects of postreplication repair.  相似文献   

2.
The mechanism by which recA (Srf) mutations (recA2020 and recA801) suppress the deficiency in postreplication repair shown by recF mutants of Escherichia coli was studied in UV-irradiated uvrB and uvrA recB recC sbcB cells. The recA (Srf) mutations partially suppressed the UV radiation sensitivity of uvrB recF, uvrB recF recB, and uvrA recB recC sbcB recF cells, and they partially restored the ability of uvrB recF and uvrA recB recC sbcB recF cells to repair DNA daughter-strand gaps. In addition, the recA (Srf) mutations suppressed the recF deficiency in the repair of DNA double-strand breaks in UV-irradiated uvrA recB recC sbcB recF cells. The recA2020 and recA801 mutations do not appear to affect the synthesis of UV radiation-induced proteins, nor do they appear to produce an altered RecA protein, as detected by two-dimensional gel electrophoresis. These results are consistent with the suggestion (M. R. Volkert and M. A. Hartke, J. Bacteriol. 157:498-506, 1984) that the recA (Srf) mutations do not act by affecting the induction of SOS responses; rather, they allow the RecA protein to participate in the recF-dependent postreplication repair processes without the need of the RecF protein.  相似文献   

3.
The molecular mechanisms for the recF-dependent and recB-dependent pathways of postreplication repair were studied by sedimentation analysis of DNA from UV-irradiated Escherichia coli cells. When the ability to repair DNA daughter strand gaps was compared, uvrB recF cells showed a gross deficiency, whereas uvrB recB cells showed only a small deficiency. Nevertheless, the uvrB recF cells were able to perform some limited repair of daughter strand gaps compared with a "repairless" uvrB recA strain. The introduction of a recB mutation into the uvrB recF strain greatly increased its UV radiation sensitivity, yet decreased only slightly its ability to repair daughter strand gaps. Kinetic studies of DNA repair with alkaline and neutral sucrose gradients indicated that the accumulation of unrepaired daughter strand gaps led to the formation of low-molecular-weight DNA duplexes (i.e., DNA double-strand breaks were formed). The uvrB recF cells were able to regenerate high-molecular-weight DNA from these low-molecular-weight DNA duplexes, whereas the uvrB recF recB and uvrB recA cells were not. A model for the recB-dependent pathway of postreplication repair is presented.  相似文献   

4.
The inhibition of cell division induced by bleomycin (BM) and UV irradiation in the set of rec mutants of E. coli K12 was studied. Data presented in this work indicate that BM treatment requires mainly the RecBC pathway for the induction of cell filamentation. In the recB21 mutant cell filamentation is delayed and reduced compared to the wild type. Cell filamentation is BM-induced with similar kinetics in strains with a proficient RecBC recombination pathway (rec+, recF143 and recN262), as well as in the strain with a fully expressed RecF pathway (recB21recC22sbcB15). Induction is completely abolished in the recB21recF143 double mutant. On the other hand cell filamentation was induced similarly by UV irradiation in all strains with a functional recF gene and in the strain with a fully operative RecF pathway, but it was delayed in the recF143 and recB21recF143 mutants.  相似文献   

5.
Suppressors of recF (srfA) were found by selection for resistance to mitomycin C and UV irradiation in a recB21 recC22 sbcB15 recF143 strain. srfA mutations map in recA and are dominant to srfA+. They suppress both the DNA repair and the recombination deficiencies due to recF mutations. Therefore, RecA protein which is altered by the srfA mutation can allow genetic recombination to proceed in the absence of recB, recC, and recF functions. recF is also required for induction of the SOS response after UV damage. We propose that recF+ normally functions to allow the expression of two recA activities, one that is required for the RecF pathway of recombination and another that is required for SOS induction. The two RecA activities are different and are separable by mutation since srfA mutations permit recombination to proceed but have not caused a dramatic increase in SOS induction in recF mutants. According to this hypothesis, one role for recF in DNA repair and recombination is to modulate RecA activities to allow RecA to participate in these recF-dependent processes.  相似文献   

6.
The role of the umuC gene product in postreplication repair was studied in UV-irradiated Escherichia coli K-12 uvrB cells. A mutation at umuC increased the UV radiation sensitivities of uvrB, uvrB recF, uvrB recB, and uvrB recF recB cells; it also increased the deficiencies in the repair of DNA daughter-strand gaps in these strains, but it did not affect the repair of DNA double-strand breaks that arose from unrepaired DNA daughter-strand gaps. We suggest that the umuC gene product is involved in a minor system for the repair of DNA daughter-strand gaps, possibly the repair of overlapping DNA daughter-strand gaps.  相似文献   

7.
In UV-irradiated Escherichia coli, the radB101 mutation sensitized uvrB recF cells 4-fold and uvrB recB cells 1.2-fold, but did not sensitize uvrB recB recF cells. The radB mutation had very little effect (1.2-fold or less) on the repair of UV radiation-induced DNA daughter-strand gaps in uvrB cells, but it did cause about a 3-fold deficiency in the repair of the DNA double-strand breaks that arise in association with nonrepaired daughter-strand gaps in UV-irradiated uvrB recF cells. Thus, the radB gene does not appear to be involved in the recF-dependent or recF recB-independent processes for the repair of DNA daughter-strand gaps, but is involved in the recB-dependent postreplication repair of DNA double-strand breaks.  相似文献   

8.
Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We show that in a uvrA recB+ recC+ genetic background there are two prerequisites for the suppression by recA(Srf) of the UV-sensitive phenotype of recF mutants. (i) The recA(Srf) protein must be provided in increased amounts either by SOS derepression or by a recA operator-constitutive mutation in a lexA(Ind) (no induction of SOS functions) genetic background. (ii) The gene recJ, which has been shown previously to be involved in the recF pathway of recombination and repair, must be functional. The level of expression of recJ in a lexA(Ind) strain suffices for full suppression. Suppression by recA441 at 30 degrees C also depends on recJ+. The hampered induction by UV of the SOS gene uvrA seen in a recF mutant was improved by a recA(Srf) mutation. This improvement did not require recJ+. We suggest that recA(Srf) and recA(Tif) mutant proteins can operate in postreplication repair independent of recF by using the recJ+ function.  相似文献   

9.
    
Summary The interaction of the recB21, uvrD3, lexA101, and recF143 mutations on UV radiation sensitization and genetic recombination was studied in isogenic strains containing all possible combinations of these mutations in a uvrB genetic background. The relative UV radiation sensitivities of the multiply mutant strains in the uvrB background were: recF recB lexA> recF recB uvrD lexA, recF recB uvrD>recA>recF uvrD lexA> recF recB, recF uvrD>recF lexA>recB uvrD lexA>recB uvrD> recB lexA, lexA uvrD>recB>lexA, uvrD>recF; three of these strains were more UV radiation sensitive than the uvrB recA strain. There was no correlation between the degree of radiation sensitivity and the degree of deficiency in genetic recombination. An analysis of the survival curves revealed that the recF mutation interacts synergistically with the recB, uvrD, and lexA mutations in UV radiation sensitization, while the recB, uvrD, and lexA mutations appear to interact additively with each other. We interpret these data to suggest that there are two major independent pathways for postreplication repair; one is dependent on the recF gene, and the other is dependent on the recB, uvrD, and lexA genes.  相似文献   

10.
In recb recC sbcB mutants genetic recombination is dependent upon the recF gene. recA801, recA802 and recA803 (formerly called srfA mutations) were originally isolated as mutations that suppress recombination deficiency caused by a recF mutation in a recB recC sbcB genetic background. Since the recA801 mutation also suppressed some of the UV sensitivity due to recF143, we sought to determine what DNA-repair pathways were actually being restored by the recA801 mutation in this genetic background. In this paper we show that the suppression of recF143 by recA801 does not extend to the recF143-mediated defects in induced repair of UV-damaged phages. In addition, we show that recA801 suppresses only slightly the recF143-associated defect in induced expression of the SOS-regulated muc genes of pKM101. These results suggest that recA801 suppresses primarily the RecF pathway of recombinational repair.  相似文献   

11.
The effect of the recombinational deficiency on W-reactivation of UV-damaged phage lambda was explored. In this paper we show that W-reactivation is reduced by the recB21 and recF143 mutations after bleomycin (BM) and UV treatment. Combination of these mutations in the recB21recF143 double mutant blocks W-reactivation completely after BM induction, but leaves residual W-reactivation ability after UV-irradiation, which is abolished by the introduction of uvrB deficiency (delta(uvrB-chlA]. W-reactivation has been rendered constitutive in recB21C22sbcB15, but the efficiency of reactivation remained virtually constant over the range of BM and UV doses, indicating the role of the RecBC(D) enzyme in W-reactivation.  相似文献   

12.
An Escherichia coli strain carrying both rec+ and sbcA has been constructed. Repair of ultraviolet light-induced deoxyribonucleic acid damage was examined by measuring survival and thymine-dimer excision in the rec+ sbcA strain as well as rec+ sbcA+ and recB recC sbcA strains. The sbcA mutation restores normal survival in both recB recC uvrB and recB recC uvr+ strains. Excision of thymine-containing dimers does not occur in uvrB mutants, regardless of the rec or sbcA genotype. Survival, after ultraviolet-light damage, of a rec+ sbcA strain is quantitatively similar to rec+ sbcA+ and recB recC sbcA strains.  相似文献   

13.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

14.
Strains of Escherichia coli have been made carrying lesions in more than one gene determining recombination. The following genotypes were constructed and verified: recC22 recB21 recA(+), recC22 recB21 recA13, recC22 recB(+)recA13, and recC(+)recB21 recA13. All multiple rec(-) strains carrying recA13 were similar to AB2463, which carries recA13 alone, in their UV sensitivities, recombination deficiencies, and inabilities to induce lambda phage in a lysogen. However, whereas AB2463 shows a high rate of ultraviolet (UV)-induced deoxyribonucleic acid (DNA) breakdown, the multiple rec(-) strains showed the low level characteristic of strains carrying recC22 or recB21 alone. The strain carrying both recC22 and recB21 was similar in all properties to the single mutants, suggesting that both gene products act in the same part of the recombination and UV repair pathways. It is concluded that in a Rec(+) strain, the recA(+) product acts to inhibit DNA breakdown determined by the recC(+) and recB(+) products.  相似文献   

15.
Genetic analysis of double-strand break repair in Escherichia coli.   总被引:5,自引:1,他引:4       下载免费PDF全文
We had reported that a double-strand gap (ca. 300 bp long) in a duplex DNA is repaired through gene conversion copying a homologous duplex in a recB21 recC22 sbcA23 strain of Escherichia coli, as predicted on the basis of the double-strand break repair models. We have now examined various mutants for this repair capacity. (i) The recE159 mutation abolishes the reaction in the recB21C22 sbcA23 background. This result is consistent with the hypothesis that exonuclease VIII exposes a 3'-ended single strand from a double-strand break. (ii) Two recA alleles, including a complete deletion, fail to block the repair in this recBC sbcA background. (iii) Mutations in two more SOS-inducible genes, recN and recQ, do not decrease the repair. In addition, a lexA (Ind-) mutation, which blocks SOS induction, does not block the reaction. (iv) The recJ, recF, recO, and recR gene functions are nonessential in this background. (v) The RecBCD enzyme does not abolish the gap repair. We then examined genetic backgrounds other than recBC sbcA, in which the RecE pathway is not active. We failed to detect the double-strand gap repair in a rec+, a recA1, or a recB21 C22 strain, nor did we find the gap repair activity in a recD mutant or in a recB21 C22 sbcB15 sbcC201 mutant. We also failed to detect conservative repair of a simple double-strand break, which was made by restriction cleavage of an inserted linker oligonucleotide, in these backgrounds. We conclude that the RecBCD, RecBCD-, and RecF pathways cannot promote conservative double-strand break repair as the RecE and lambda Red pathways can.  相似文献   

16.
The presence of the plasmid colicinogenic factor Ib-P9 in Escherichia coli wild type cells is shown to increase bacterial survival after UV irradiation and the action of N-methyl-N'-nitro-N-nitrosoguanidine. The ability of the plasmid to cause the UV protection is observed in uvrA, uvrB, uvrC, polA, recB, recF E. coli strains, but the plasmid does not restore the UV resistance of the mutant cells to the wild type level. The protective effect of the plasmid CoI Ib-P9 depends on the recA+lexA+ genotype of the cells. The inhibition of protein synthesis (amino acid starvation) before and after UV irradiation does not prevent the UV protection by ColIb-P9. The nature of the plasmid-associated repair functions is discussed.  相似文献   

17.
The mutations in the genes controlling the homologous DNA recombination in Escherichia coli cells effect the efficiency of Tn1 transposition. Mutations in recB and recC genes decrease 50-fold the frequencies of Tn1 transposition. Introduction of an additional mutation in sbcB gene increase transposition frequency for three orders as compared with the one registered in wild type cells. Inactivation of sbcB gene in the wild type cells does not affect transposition significantly. Mutation in recF gene results in the great decrease of transposition when it is introduced into multiple recBC sbcB mutant, but not into the wild type bacteria. The possibility of two pathways for Tn1 transposition existing in Escherichia coli cells is discussed, as well as possibility of existence of similar stages in transposition and recombination controlled by the same genes.  相似文献   

18.
19.
Experiments were designed to determine the association between the repair of gamma-radiation-induced DNA double-strand breaks (DSB) and the induction of 700-1000 bp long deletions (Lac(-)----Lac+), base substitutions (leuB19----Leu+), and frameshifts (trpE9777----Trp+) in Escherichia coli K-12. Over the range of 2.5-20 krad, deletions were induced with linear kinetics, as has been shown for the induction of DSB, while the induction kinetics of base substitutions and frameshifts were curvilinear. Like the repair of DSB, deletion induction showed an absolute requirement for an intact recB gene as well as a dependency on the type of preirradiation growth medium; these requirements were not seen for base substitutions or frameshifts. In addition, about 80% of the spontaneous deletions were absent in the recB21 strain. A recC1001 mutation, which confers a 'hyper-Rec' phenotype, increased the rate of gamma-radiation-induced deletions as well as the low-dose production of base substitutions and frameshifts. A recF143 mutation increased the yield of gamma-radiation-induced deletions without increasing base substitutions or frameshifts. A mutS mutation markedly enhanced the gamma-radiation induction of frameshifts, and had a slight effect on base substitutions, but did not affect the induction of deletions. Resistance to gamma-irradiation and the capacity to repair DSB (albeit at about half the normal rate) were restored to the radiosensitive recB21 strain by the addition of the sbcB21 and sbcC201 mutations. However, the radioresistant recB sbcBC strain, which is recombination proficient via the RecF pathway, was still grossly deficient in the ability to produce deletions. A model for deletion induction as a by-product of the recB-dependent (Chi-dependent) repair of gamma-radiation-induced DSB is discussed, as is the inability to detect deletions in cells that use only the recF-dependent (Chi-independent) mechanism to repair DSB.  相似文献   

20.
Mutants of Escherichia coli K-12 unable to excise pyrimidine dimers from their deoxyribonucleic acid (DNA) because of a uvr mutation show a higher survival when plated on a minimal salts medium after exposure to ultraviolet radiation than when plated on a complex medium such as nutrient agar containing yeast extract. This response has been called minimal medium recovery (MMR). Recovery of uvr mutants can take place in liquid as well as on solid medium, but not in buffer or under conditions of amino acid starvation that do not permit cell growth and normal DNA replication. MMR can thus be distinguished from the recovery of recombination-deficient (rec(-)uvr(+)) derivatives of K-12 which can occur under conditions where growth is not possible. Because MMR is characteristic of excision-defective mutants, it evidently reflects a type of repair independent of excision. We have obtained genetic evidence that MMR is determined by the rec genes, which also control recombination in K-12. Cells carrying a uvr mutation together with recA13, recA56, recB21, or recC22 failed to show MMR and were more sensitive to ultraviolet radiation than either their rec(+)uvr(-) or rec(-)uvr(+) parents. The rec(+)uvr(-) derivatives obtained from recA uvr(-) strains by transduction or by reversion regained the capacity for MMR. Our results indicate that inactivation of any one of the three genes, recA, recB, or recC, prevents cells from showing MMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号