首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

2.
Liu L  Du G  Chen J  Wang M  Sun J 《Bioresource technology》2008,99(17):8532-8536
This study aimed to enhance hyaluronic acid (HA) production by a two-stage culture strategy based on the modeling of batch and fed-batch culture of Streptococcus zooepidemicus. Batch culture had higher specific HA synthesis rate while fed-batch culture had higher specific cell growth rate. The lower specific HA synthesis rate in fed-batch culture resulted from the competition of cell growth for the common precursors at a low substrate concentration. Based on the modeling of batch and fed-batch culture of S. zooepidemicus, a two-stage culture strategy was proposed to enhance HA production. S. zooepidemicus were cultured in a fed-batch mode with sucrose concentration maintained at 1.0+/-0.2g/L during 0-8h and then batch culture was performed during 8-20h with an initial sucrose concentration of 15g/L. With the proposed two-stage culture strategy, HA production was increased to 6.6g/L compared with 5.0g/L in batch culture with the same total sucrose. The enhanced HA production by the proposed two-stage culture strategy resulted from the decreased inhibition of cell growth and the increased transformation rate of sucrose to HA.  相似文献   

3.
《Process Biochemistry》2007,42(1):52-56
A improved pH-control fed-batch strategy for Bacillus thuringiensis subsp. darmstadiensis 032 producing thuringiensin was developed based on the analysis of the batch culture, constant rate fed-batch cultures and the original pH-control fed-batch. Having considered the pH variation and the glucose consumption status, the pH was adjusted from 6.5 to 7.0 by adding base in the late cultivation period of batch culture, and then the pH was kept at 7.0 by glucose feeding. The feeding was terminated when the pH could not be controlled by glucose feeding anymore. The proposed fed-batch strategy effectively avoided underfeeding or overfeeding, and it increased the thuringiensin yield and YP/X by 89.51% and 103.2% compared to that of the batch culture, respectively.  相似文献   

4.
In animal cell cultivation, cell density and product concentration are often low due to the accumulation of toxic end-products such as ammonia and lactate and/or the depletion of essential nutrients. A hybridoma cell line (CRL-1606) was cultivated in T-flasks using a newly devised medium feeding strategy. The goals were to decrease ammonia and lactate formation by the design of an initial medium which would provide a starting environment to achieve optimal cell growth. This was followed by using a stoichiometric equation governing animal cell growth and then designing a supplemental medium for feeding strategy used to control the nutritional environment. The relationship between the stoichiometric demands for glutamine and nonessential amino acids was also studied. Through stoichiometric feeding, nutrient concentrations were controlled reasonably well. Consequently, the specific production rate of lactate was decreased by fourfold compared with conventional fed-batch culture and by 26-fold compared with conventional batch culture. The specific production rate of ammonia was decreased by tenfold compared with conventional fed-batch culture and by 50-fold compared with conventional batch culture. Most importantly, total cell density and monoclonal antibody concentration were increased by five- and tenfold respectively, compared with conventional batch culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Tylosin-producing Streptomyces fradiae was cultured on a synthetic medium with a high glutamate-glucose ratio. Tylosin batch fermentations with this medium were characterized by a high initial specific production rate of tylosin (q(tylosin), mg/g h) that decreased as the fermentation progressed. Continuous feeding of glutamate, glucose, and methyloleate at a constant feed rate initiated during the period of high q(tylosin) had been shown to produce some increase in tylosin productivity. By using a cyclic feeding strategy, it was possible to increase tylosin productivity further. Tylosin fed-batch fermentations with glutamate and glucose being fed to the culture in cyclic square-wave profiles with methyloleate in excess showed several-fold increase in final q(tylosin) and tylosin titers. By varying cycle amplitudes and period of the substrates, it was found that maximum tylosin productivity occurred when the glutamate cycle amplitude was 600 mg/L and that of glucose was 42.5 mg/L per cycle period of 24 h. With these cycle amplitudes of glutamate and glucose, the tylosin cyclic fed-batch culture also showed high cellular uptake of methyloleate. Decreasing or increasing glucose cycle amplitude at fixed glutamate amplitude lowered tylosin production, and no further stimulation of tylosin synthesis was observed when alpha-ketoglutarate was supplemented to the cyclic substrate feeds. Under optimum cyclic conditions it was possible to maintain linear tylosin accretion and a constant value of q(tylosin) up to 240 h.  相似文献   

6.
《Process Biochemistry》2014,49(12):2044-2048
Production of pediocin SM-1 by Pediococcus pentosaceus Mees 1934 was investigated in semi-aerobic, pH-controlled, batch and fed-batch fermentations using a complex medium containing sucrose as the main source of carbon. The effects of sucrose concentration were studied in fed-batch fermentations in which a sucrose solution was added at stable feeding rates (5, 7, 9 and 10 g/l/h). The results showed that pediocin is produced as a product of the primary metabolism and its titer could be greatly improved by adjusting the sucrose feeding rate in fed-batch fermentation. The maximum titer of pediocin of 145 AU/ml was obtained in the fed-batch culture with 7 g/l/h feeding rate and that was 119% higher compared to the titer obtained in batch culture. Higher feeding rates (9 and 10 g/l/h) resulted in decreased pediocin yields while biomass levels appeared to be rather unaffected. The specific rate of pediocin formation was also sensitive to sucrose concentration levels. A mathematical model developed on the basis of well-known rate equations for batch and fed-batch cultures and growth associated production, described successfully cell growth, sucrose assimilation, lactate production and pediocin production in fed-batch culture.  相似文献   

7.
In this study, cutinase production by Thermobifida fusca WSH03-11 was investigated with mixed short-chain organic acids as co-carbon sources to demonstrate the possibility of producing high value-added products from organic wastes. T. fusca WSH03-11 was cultured with different combinations of butyrate, acetate, and lactate with a purpose of increasing cutinase activity. The optimum proportion of butyrate, acetate, and lactate was 4:1:3. In batch cultivation, acetate and lactate were consumed quickly, while the consumption of butyrate was depressed in the presence of acetate with a concentration higher than 0.5 g/L. Based on these results, a two-stage batch and fed-batch cultivation strategy was proposed: a batch culture with acetate and lactate as the co-carbon sources in the first 10 h, and then a fed-batch culture with a constant butyrate feeding rate of 12 mL/h during 11∼20 h. By this two-stage cultivation strategy, cutinase activity, dry cell weight, and consumption rate of butyrate were increased by 70%, 103.4%, and 4.3-fold, respectively, compared to those of the batch cultivation. These results provided a novel and efficient way to produce high value-added products from organic wastes.  相似文献   

8.
Optimal substrate feeding strategy in bioreactor operation was investigated to increase the production of secondary metabolite in a high density culture of plant cell. It was accomplished by the previously proposed structured kinetic model that describes the cell growth and synthesis of the secondary metabolite, berberine, in a batch suspension culture ofThalictrum rugosum. Four types of operation strategies for sugar feeding intoT. rugosum culture were proposed based on the model, which were the periodic fedbatch operations to maintain the cell activity, the cell viability, and the specific production rate, and the perfusion operation to maintain the specific production rate. From the simulation results of these strategies, it could be found that the periodic fed-batch operation and the perfusion operation could achieve the higher volumetric production of berberine (mg berberine/L) and specific production yield (mg berberine/g dry cell weight) than those of batch cultures. Although the highest productivity (mg berberine/day) of berberine could be achieved by the periodic fed-batch operation to maintain the cell activity compared with the other strategies in the periodic fed-batch operations, the specific production yield was low due to the higher maximum dry cell weight than other cases. The periodic fed-batch operation to maintain cell viability resulted in the highest volumetric production of berberine and specific production yield compared with the other strategies. In the cases of maintaining the specific production rate, the per-formance of the periodic fed-batch operation was better than that of the perfusion operation in the respect of the volumetric production and productivity of berberine. In order to increase the volumetric production of berberine and to get the highest specific production yield, the periodic fed-batch operation to maintain cell viability could be chosen as the optimal operating strategy in high density, culture ofT. rugosum plant cell.  相似文献   

9.
To enhance the productivity and activity of nitrile hydratase inRhodococcus rhodochrous M33, a glucose-limited fed-batch culture was performed. In a fed-batch culture where the glucose was controlled at a limited level and cobalt was supplemented during the fermentation period, the cell mass and total activity of nitrile hydratase both increased 3.3-fold compared to that in the batch fermentation. The productivity of nitrile hydratase also increased 1.9-fold compared to that in the batch fermentation. The specific activity of nitrile hydratase in the whole cell preparation when using a fed-batch culture was 120 units/mg-DCW, which was similar to that in the batch culture.  相似文献   

10.
The operation of a fed-batch culture is more complicated than that of batch or continuous culture. Thus, an appropriate feeding strategy for fed-batch cultures should be carefully designed. In this study, a simple feeding strategy for fed-batch culture of Bacillus thuringiensis based on motile intensity is described. The feeding strategy consisted of two steps: (1) initiating feeding at the peak of motile intensity; (2) terminating feeding at low motile intensity (or non-motility) of the cells. In addition, the motile intensity of B. thuringiensis was used to determine the optimum environmental conditions (pH, temperature, and dissolved oxygen) and optimum medium composition. Using this fed-batch strategy, the production of thuringiensin increased 34% compared with batch culture using the same environmental conditions and medium composition. The proposed strategy for fed-batch culture helps to avoid overfeeding of substrate and facilitates on-line control. A comparison of several alternative strategies for fed-batch culture demonstrated that strategies such as glucose-stat and DO-stat result in a lower productivity than that obtained using the motility intensity method.  相似文献   

11.
Batch kinetics of polyhydroxybutyrate (PHB) synthesis in a bioreactor under controlled conditions of pH and dissolved oxygen gave a biomass of 14 g l(-1) with a PHB concentration of 6.1 g l(-1) in 60 h. The data of the batch kinetics was used to develop a mathematical model, which was then extrapolated to fed-batch by incorporating the dilution due to substrate feeding. Offline computer simulation of the fed-batch model was done to develop the nutrient feeding strategies in the fed-batch cultivation. Fed-batch strategies with constant feeding of only nitrogen and constant feeding of both nitrogen and fructose were tried. Constant feeding strategy for nitrogen and fructose gave a better PHB production rate of 0.56 g h(-1) over the value obtained in batch cultivation (PHB production rate - 0.4 g h(-1)).  相似文献   

12.
The concept of the feeding strategy was to minimise the formation of inhibiting metabolites and to increase the yield of monoclonal antibodies in fed-batch cultures of hybridoma cells by a balanced supply of substrates. A process control system based on fieldbus technology was used for monitoring and control. External program routines were implemented to control dissolved oxygen (DO) and to calculate the oxygen uptake rate (OUR) and cumulative oxygen consumption (COC) simultaneously. A concentrated feed solution was supplied according to the off-line estimated stoichiometric ratio between oxygen and glucose consumption (GC). Feeding was initiated automatically when the OUR decreased due to substrate limitation. The antibody concentration increased three-fold compared to the conventional batch culture by applying this strategy. But it was not possible to avoid inhibition by ammonia during the fed-batch phase. This was accomplished by the use of a dialysis membrane. Dialysis fed-batch cultures were performed in a membrane dialysis reactor with a `nutrient-split' feeding strategy, where concentrated medium is fed to the cells and toxic metabolites are removed into a buffer solution. This resulted in a ten-fold increase of the antibody concentration compared to the batch. Amino acid concentrations were analysed to identify limiting conditions during the cultivation and to analyse the performance of the nutrient supply in the fed-batch and dialysis fed-batch.  相似文献   

13.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

14.
Batch and fed-batch cultures of a murine hybridomacell line (AFP-27) were performed in a stirred tankreactor to estimate the effect of feed rate on growthrate, macromolecular metabolism and antibodyproduction. Macromolecular composition was foundto change dynamically during batch culture ofhybridoma cells possibly due to active production ofDNA, RNA and protein during the exponential phase.Antibody synthesis is expected to compete with theproduction of cellular proteins from the amino acidpool. Therefore, it is necessary to examine therelationship between cell growth in terms of cellularmacromolecules and antibody production. In this study,we searched for an optimum feeding strategy bychanging the target specific growth rate in fed-batchculture to give higher antibody productivity whileexamining the macromolecular composition. Concentratedglucose (60 mM) and glutamine (20 mM) in DR medium(1:1 mixture of DMEM and RPMI) with additional aminoacids were fed continuously to the culture and thefeed rate was updated after every sampling to ensureexponential feeding (or approximately constantspecific growth rate). Specific antibody productionrate was found to be significantly increased in thefed-batch cultures at the near-zero specific growthrate in which the productions of cellular DNA, RNA,protein and polysaccharide were strictly limited byslow feeding of glucose, glutamine and other nutrients. Possible implications of these results are discussed.  相似文献   

15.
The production of 1,4-dihydroxy-2-naphthoic acid (DHNA) was investigated using a fed-batch culture of Propionibacterium freudenreichii ET-3. DHNA is a precursor of menaquinone (MK) and is transformed to MK by combination with an isoprenoid unit. We found that ET-3 stopped MK production and increased DHNA production in an anaerobic fed-batch culture by maintaining the lactose concentration at approximately zero. The maximum DHNA concentration observed in the anaerobic fed-batch culture was markedly higher than the maximum DHNA concentration observed in an anaerobic batch culture. Moreover, MK or DHNA production was affected by the lactose feeding rate; this suggests that lactose metabolism participates in the syntheses of these products. On the other hand, accumulation of propionate was found to inhibit DHNA production in the fed-batch culture. Based on the fact that ET-3 increases DHNA production in an aerobic culture by consuming propionate, we carried out a cultivation experiment in which an anaerobic fed-batch culture was switched to an anaerobic batch culture and found that the DHNA production was increased to a greater extent than the DHNA production in an anaerobic fed-batch culture. These results suggest that DHNA production by ET-3 is markedly influenced by carbon source limitation and the oxygen supply.  相似文献   

16.
A gratuitous strain was developed by disrupting the GAL1 gene (galactokinase) of recombinant Saccharomyces cerevisiae harboring the antithrombotic hirudin gene in the chromosome under the control of the GAL10 promoter. A series of glucose-limited fed-batch cultures were carried out to examine the effects of glucose supply on hirudin expression in the gratuitous strain. Controlled feeding of glucose successfully supported both cell growth and hirudin expression in the gratuitous strain. The optimum fed-batch culture done by feeding glucose at a rate of 0.3 g h–1 produced a maximum hirudin concentration of 62.1 mg l–1, which corresponded to a 4.5-fold increase when compared with a simple batch culture done with the same strain.  相似文献   

17.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

18.
The production of rifamycins B and SV using glucose as main C-source by Amycolatopsis mediterranei in batch and fed-batch culture was investigated. Fed-batch culture using glucose as mono feeding substrate either in the form of pulse addition, in case of shake flask, or with constant feeding rate, in bioreactor level, proved to be an alternative production system with a significant increase in both volumetric and specific antibiotic production. The maximal concentrations of about 1146 mg/l and 2500 mg/l of rifamycins B and SV, respectively, was obtained in fed-batch culture in bioreactor level under non-oxygen limitation. On the other hand, the rate of rifamycins production was increased from 6.58 to 12.13 mg/l x h for rifamycin B and from 9.47 to 31.83 mg/l x h for rifamycin SV on the bioprocess transfer and improvement from the conventional batch cultivation in shake flask to fed-batch cultivation in stirred tank bioreactor.  相似文献   

19.
Summary Fed-batch culture of Bacillus thuringiensis for thuringiensin (-exotoxin) production was carried out in a modified airlift reactor. The feeding policy was based on the pH value in the broth. The feed rate of the substrate was regulated by an appropriate pH value. The yield of thuringiensin based on the fed-batch culture increased 30% in comparison with that of batch culture.  相似文献   

20.
Summary Torulopsis bombicola (ATCC 22214) produced sophorose lipid to 80 g/l in batch culture containing 11% glucose and 10% soybean oil as carbon and energy sources. According to the carbon mass balance analysis, 13% and 37% of input carbon were channeled to cells and to products, respectively, and 50% of the total input carbon was channeled to CO2 gas in batch culture. In fed-batch culture with intermittent oil feeding, however, the carbon fractions incorporated into sophorose lipid and cells were 60% and 12%, respectively, and the carbon fraction evolved as CO2 gas was 30%. In conclusion, yield of sophorose lipid based on total input carbon substrates was increased from 0.37 g/g-substrate in batch culture to 0.6 g/ g-substrate by employing a fed-batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号