首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene-dense chromosomes of archaea and bacteria were long thought to be devoid of pseudogenes, but with the massive increase in available genome sequences, whole genome comparisons between closely related species have identified mutations that have rendered numerous genes inactive. Comparative analyses of sequenced archaeal genomes revealed numerous pseudogenes, which can constitute up to 8.6% of the annotated coding sequences in some genomes. The largest proportion of pseudogenes is created by gene truncations, followed by frameshift mutations. Within archaeal genomes, large numbers of pseudogenes contain more than one inactivating mutation, suggesting that pseudogenes are deleted from the genome more slowly in archaea than in bacteria. Although archaea seem to retain pseudogenes longer than do bacteria, most archaeal genomes have unique repertoires of pseudogenes.  相似文献   

2.
Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression in Sulfolobus islandicus, a hyperthermophilic crenarchaeon. Two expression vectors, pSeSD and pEXA, harboring 11 unique restriction sites were constructed. They contain coding sequences of two hexahistidine (6×His) peptide tags and those coding for two protease sites, the latter of which make it possible to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started at multiple sites downstream of the 6×His codons. Intriguingly, inserting an RBS site upstream of the ATG codon regained the expression of the 6×His tag, as shown with pSeSD-N-lacS. These results have yielded novel insight into the archaeal translation mechanism. The crenarchaeon Sulfolobus can utilize N-terminal coding sequences of proteins to specify translation initiation in the absence of an RBS site.  相似文献   

3.
F Morle  J Starck    J Godet 《Nucleic acids research》1986,14(8):3279-3292
We previously hypothesized that a 2 nucleotide deletion, causing a A-greater than C change at position -3 preceding the ATG initiation codon of alpha globin gene, reduced translation efficiency of alpha globin mRNA and was responsible for a form of alpha + thalassemia displayed by an Algerian patient. We presently show that this deletion leads to a 30-45% reduction in translation efficiency of synthetic alpha globin mRNA in rabbit reticulocyte lysate. In other experiments, we constructed alpha/G gamma hybrid globin genes in which the 3' end of normal or mutated alpha globin genes downstream to the ATG initiation codon was substituted by the 3' part of a G gamma globin gene. COS cells transfected with either of these 2 hybrid genes were shown to synthesize a similar amount of alpha/G gamma hybrid mRNAs but 50% less G gamma globin when transfected with the alpha/G gamma hybrid gene carrying the deletion. These results definitively establish that the 2 nucleotide deletion reduces translation efficiency by 30-50%. This contrasts with the 93% reduction induced by a similar A-greater than C change at position -3 in the different nucleotide context preceding the ATG codon of the rat preproinsulin gene.  相似文献   

4.
A protein-gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined. By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation sites of 87 genes were successfully assigned on the genome. The elucidated sequence features surrounding the translation initiation sites were as follows: (1) GTG and TTG in addition to the ATG were used as rare initiation codons; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 51 initiation sites (58.6%); (3) the nucleotides at the two regions, from -35 to -33, and from -19 to -17 (relative to the first nucleotide in the initiation codon) were preferentially adenines or thymines; (4) the nucleotides at the region from -14 to -8 were preferentially purines; (5) the nucleotide at position -1 was biased towards non-guanine (96.6%); (6) the nucleotide at the position +5 was preferentially cytosine (63.2%). It was evident that removal of the translation initiator methionine was dependent on the side-chain bulkiness of the penultimate amino acid residue. The predicted putative signal peptide sequences were also indicated. Besides confirming the existence of many predicted proteins, the data will serve as a starting point for the study of signals important in post-translational processing and nucleotide sequences important in the initiation of translation.  相似文献   

5.
6.

Background

Shine-Dalgarno (SD) signal has long been viewed as the dominant translation initiation signal in prokaryotes. Recently, leaderless genes, which lack 5'-untranslated regions (5'-UTR) on their mRNAs, have been shown abundant in archaea. However, current large-scale in silico analyses on initiation mechanisms in bacteria are mainly based on the SD-led initiation way, other than the leaderless one. The study of leaderless genes in bacteria remains open, which causes uncertain understanding of translation initiation mechanisms for prokaryotes.

Results

Here, we study signals in translation initiation regions of all genes over 953 bacterial and 72 archaeal genomes, then make an effort to construct an evolutionary scenario in view of leaderless genes in bacteria. With an algorithm designed to identify multi-signal in upstream regions of genes for a genome, we classify all genes into SD-led, TA-led and atypical genes according to the category of the most probable signal in their upstream sequences. Particularly, occurrence of TA-like signals about 10 bp upstream to translation initiation site (TIS) in bacteria most probably means leaderless genes.

Conclusions

Our analysis reveals that leaderless genes are totally widespread, although not dominant, in a variety of bacteria. Especially for Actinobacteria and Deinococcus-Thermus, more than twenty percent of genes are leaderless. Analyzed in closely related bacterial genomes, our results imply that the change of translation initiation mechanisms, which happens between the genes deriving from a common ancestor, is linearly dependent on the phylogenetic relationship. Analysis on the macroevolution of leaderless genes further shows that the proportion of leaderless genes in bacteria has a decreasing trend in evolution.
  相似文献   

7.
钟智  李宏 《生物物理学报》2008,24(5):379-392
以细菌和古菌基因组5′ UTR序列作为研究对象,分析在5′ UTR 的3个不同阅读框架中三联体AUG的分布,发现无论是细菌还是古菌基因组都在阅读框1中有非常明显的AUG缺失(depletion)。AUG的缺失表明在起始密码子上游的AUG很可能会对基因的翻译起始产生影响。分析得知:绝大部分的AUG都是以uORF(upstream open reading frame)的形式出现的,uAUG(upstream AUG)的数量很少,特别是在阅读框1中,而且在细菌基因组的阅读框1中uAUG较多地出现在了含有SD序列的基因上游。比较发现,uAUG引导的序列在同义密码子使用上的偏好性较真正的编码序列差,这可能表明细菌和古菌在同义密码子使用上的偏好性也是决定基因准确地翻译起始的重要因素之一。  相似文献   

8.
The sequence flanking translational initiation site in protozoa.   总被引:6,自引:1,他引:5       下载免费PDF全文
Nucleotide sequences flanking the translational initiation site were compiled from protozoan nuclear genes and were compared in every protozoan group. The entire 5'-untranslated sequences were very rich in A- and T-residues, but poor in G- and C-residues in most protozoan genes except for the flagellated ones. The sequence AAAAATTTTTAAAATTTAAAATGANAT emerged as a consensus sequence flanking the initiation site in the major protozoan group, although the sequences upstream from -4 (four nucleotides upstream from the ATG codon) were divergent among ciliates, sarcodinians, and sporozoans. On the other hand, the consensus sequence for flagellates was revealed to be a simple feature. Only the nucleotide position -3 was occupied with a high frequency of A-residue, in other positions it appeared randomly. These facts suggest that the strong preference for A-residue at the position -3 is a universal feature in nuclear genes for all eukaryotes.  相似文献   

9.
Dinucleotide frequencies are useful for characterizing consensus elements as a minimum unit of nucleotide sequence because the neighborhood relations of nucleotide sequences are reflected in dinucleotides. Using a consensus score based on dinucleotide frequencies and intra-species codon usage heterogeneity, denoted by the Z1 parameter, we report the relationship between nucleotide conservation at the translation initiation sites of genes in the Escherichia coli K-12 genome (W3110) and codon usage in its downstream genes. Significant positive correlations were obtained in three regions centered at -13, -4, and +7, which correspond to the Shine-Dalgarno element, the A + T element immediately upstream of the translation initiation site, and the downstream box, respectively.  相似文献   

10.
Understanding regulatory mechanisms of protein synthesis in eukaryotes is essential for the accurate annotation of genome sequences. Kozak reported that the nucleotide sequence GCCGCC(A/G)CCAUGG (AUG is the initiation codon) was frequently observed in vertebrate genes and that this 'consensus' sequence enhanced translation initiation. However, later studies using invertebrate, fungal and plant genes reported different 'consensus' sequences. In this study, we conducted extensive comparative analyses of nucleotide sequences around the initiation codon by using genomic data from 47 eukaryote species including animals, fungi, plants and protists. The analyses revealed that preferred nucleotide sequences are quite diverse among different species, but differences between patterns of nucleotide bias roughly reflect the evolutionary relationships of the species. We also found strong biases of A/G at position -3, A/C at position -2 and C at position +5 that were commonly observed in all species examined. Genes with higher expression levels showed stronger signals, suggesting that these nucleotides are responsible for the regulation of translation initiation. The diversity of preferred nucleotide sequences around the initiation codon might be explained by differences in relative contributions from two distinct patterns, GCCGCCAUG and AAAAAAAUG, which implies the presence of multiple molecular mechanisms for controlling translation initiation.  相似文献   

11.
The steady-state levels and half-lives of CYC1 mRNAs were estimated in a series of mutant strains of Saccharomyces cerevisiae containing (i) TAA nonsense codons, (ii) ATG initiator codons, or (iii) the sequence ATA ATG ACT TAA (denoted ATG-TAA) at various positions along the CYC1 gene, which encodes iso-1-cytochrome c. These mutational alterations were made in backgrounds lacking all internal in-frame and out-of-frame ATG triplets or containing only one ATG initiator codon at the normal position. The results revealed a "sensitive" region encompassing approximately the first half of the CYC1 mRNA, in which nonsense codons caused Upf1-dependent degradation. This result and the stability of CYC1 mRNAs lacking all ATG triplets, as well as other results, suggested that degradation occurs unless elements associated with this sensitive region are covered with 80S ribosomes, 40S ribosomal subunits, or ribonucleoprotein particle proteins. While elongation by 80S ribosomes could be prematurely terminated by TAA codons, the scanning of 40S ribosomal units could not be terminated solely by TAA codons but could be disrupted by the ATG-TAA sequence, which caused the formation and subsequent prompt release of 80S ribosomes. The ATG-TAA sequence caused degradation of the CYC1 mRNA only when it was in the region spanning nucleotide positions -27 to +37 but not in the remaining 3' distal region, suggesting that translation could initiate only in this restricted initiation region. CYC1 mRNA distribution on polyribosomes confirmed that only ATG codons within the initiation region were translated at high efficiency. This initiation region was not entirely dependent on the distance from the 5' cap site and was not obviously dependent on the short-range secondary structure but may simply reflect an open structural requirement for initiation of translation of the CYC1 mRNA.  相似文献   

12.
Acquisition of new genetic material through horizontal gene transfer has been shown to be an important feature in the evolution of many pathogenic bacteria. Changes in the genetic repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens. However, horizontal gene transfer across the domains i.e. archaea and bacteria is not so common. In this context, we explore events of horizontal gene transfer between archaea and bacteria. In order to determine whether the acquisition of archaeal genes by lateral gene transfer is an important feature in the evolutionary history of the pathogenic bacteria, we have developed a scheme of stepwise eliminations that identifies archaeal-like genes in various bacterial genomes. We report the presence of 9 genes of archaeal origin in the genomes of various bacteria, a subset of which is also unique to the pathogenic members and are not found in respective non-pathogenic counterparts. We believe that these genes, having been retained in the respective genomes through selective advantage, have key functions in the organism’s biology and may play a role in pathogenesis.  相似文献   

13.
14.
Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6?? resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea.  相似文献   

15.
Recognition of protein-coding genes, a classical bioinformatics issue, is an absolutely needed step for annotating newly sequenced genomes. The Z-curve algorithm, as one of the most effective methods on this issue, has been successfully applied in annotating or re-annotating many genomes, including those of bacteria, archaea and viruses. Two Z-curve based ab initio gene-finding programs have been developed: ZCURVE (for bacteria and archaea) and ZCURVE_V (for viruses and phages). ZCURVE_C (for 57 bacteria) and Zfisher (for any bacterium) are web servers for re-annotation of bacterial and archaeal genomes. The above four tools can be used for genome annotation or re-annotation, either independently or combined with the other gene-finding programs. In addition to recognizing protein-coding genes and exons, Z-curve algorithms are also effective in recognizing promoters and translation start sites. Here, we summarize the applications of Z-curve algorithms in gene finding and genome annotation.  相似文献   

16.
17.
18.
19.
The codon adaptation index (CAI) values of all protein-coding sequences of the full-length cDNA libraries of Mus musculus were computed based on the RIKEN mouse full-length cDNA library. We have also computed the extent of consensus in flanking sequences of the initiator ATG codon based on the 'relative entropy' values of respective nucleotide positions (from -20 to +12 bp relative to the initiator ATG codon) for each group of genes classified by CAI values. With regard to the two nucleotides positions (-3 and +4) known to be highly conserved in Kozak's consensus sequence, a clear correlation between CAI values and relative entropy values was observed at position -3 but this was not significant at position +4, although a significant correlation was found at position -1 of the consensus sequence. Further, although no correlation was observed at any additional positions, relative entropy values were very high at positions -4, -6, and -8 in genes with high CAI values. These findings suggest that the extent of conservation in the flanking sequence of the initiator ATG codon including Kozak's consensus sequence was an important factor in modulation of the translation efficiency as well as synonymous codon usage bias particularly in highly expressed genes.  相似文献   

20.
Proper cell function relies on correct protein localization. As a first step in the delivery of extracytoplasmic proteins to their ultimate destinations, the hydrophobic barrier presented by lipid-based membranes must be overcome. In contrast to the well-defined bacterial and eukaryotic protein translocation systems, little is known about how proteins cross the membranes of archaea, the third and most recently described domain of life. In bacteria and eukaryotes, protein translocation occurs at proteinaceous sites comprised of evolutionarily conserved core components acting in concert with other, domain-specific elements. Examination of available archaeal genomes as well as cloning of individual genes from other archaeal strains reveals the presence of homologues to selected elements of the bacterial or eukaryotic translocation machines. Archaeal genomic searches, however, also reveal an apparent absence of other, important components of these two systems. Archaeal translocation may therefore represent a hybrid of the bacterial and eukaryotic models yet may also rely on components or themes particular to this domain of life. Indeed, considering the unique chemical composition of the archaeal membrane as well as the extreme conditions in which archaea thrive, the involvement of archaeal-specific translocation elements could be expected. Thus, understanding archaeal protein translocation could reveal the universal nature of certain features of protein translocation which, in some cases, may not be readily obvious from current comparisons of bacterial and eukaryotic systems. Alternatively, elucidation of archaeal translocation could uncover facets of the translocation process either not yet identified in bacteria or eukaryotes, or which are unique to archaea. In the following, the current status of our understanding of protein translocation in archaea is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号