共查询到20条相似文献,搜索用时 31 毫秒
1.
假根羽藻外周天线捕光色素蛋白复合物(L ight-harvesting Comp lex II,LHC II)在不同聚集态的情况下,它所包含色素分子间的能量传递是不同的。采用荧光发射光谱和激发光谱技术对不同聚集态(单体、三聚体和寡聚体)的LHC II进行研究,发现三聚体中色素分子间的能量传递效率比较高,单体要小一些。520 nm激发下,类胡萝卜素分子向叶绿素a分子的能量传递效率:三聚体约为64%、单体约为56%;650 nm激发下,叶绿素b分子向叶绿素a分子的能量传递效率:三聚体约为89%、单体约为78%。寡聚体的能量传递要复杂些,从光谱分析出它包含两种不同吸收光谱特性的叶绿素b分子,吸收峰分别为480 nm和468 nm,其中蓝区吸收峰为480 nm的叶绿素b分子向发射685 nm荧光的叶绿素a分子的能量传递效率要小于75%。 相似文献
2.
Triplet Excitation Transfer between Carotenoids in the LH2 Complex from Photosynthetic Bacterium Rhodopseudomonas palustris 总被引:2,自引:0,他引:2
Feng J Wang Q Wu YS Ai XC Zhang XJ Huang YG Zhang XK Zhang JP 《Photosynthesis research》2004,82(1):83-94
We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex. 相似文献
3.
Larry Lüer Anne-Marie Carey Sarah Henry Margherita Maiuri Kirsty Hacking Dario Polli Giulio Cerullo Richard?J. Cogdell 《Biophysical journal》2015,109(9):1885-1898
Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. 相似文献
4.
Regulation mechanism of excitation energy transfer between phycobilisomes (PBS) and the photosynthetic reaction centres was studied by the state transition techniques in PBS-thylakoid membrane complexes. DCMU, betaine, and N-ethylmaleimide were applied to search for the details of energy transfer properties based on the steady fluorescence measurement and individual deconvolution spectra at state 2 or state 1. The closure of photosystem (PS) 2 did not influence on fluorescence yields of PS1, i.e., energy could not spill to PS1 from PS2. When the energy transfer pathway from PBS to PS1 was disturbed, the relative fluorescence yield of PS2 was almost the same as that of PS2 in complexes without treatment. If PBSs were fixed by betaine, the state transition process was restrained. Hence PBS may detach from PS2 and become associated to PS1 at state 2. Our results contradict the proposed "spill-over" or "PBS detachment" models and support the mobile "PBS model". 相似文献
5.
T. Kakitani T. Kawatsu A. Kimura A. Yamada T. Yamato S. Yamamoto 《Journal of biological physics》2002,28(3):367-381
We discuss unique mechanisms typical in the elementary processes ofbiological functions. We focus on three topics. Excitation energytransfer in the light-harvesting antenna systems of photosyntheticbacteria is unique in its structure and the energy transfer mechanism. Inthe case of LH2 of Rhodopseudomonas acidophila, the B850 intra-ringenergy transfer and the inter-ring energy transfer between B800 and B850take place by the intermediate coupling mechanism of energy transfer. Theexcitonic coherent domain shows a wave-like movement along the ring, andthis property is expected to play a significant role in the inter-ringenergy transfer between LH2's. The electron transfer in biological systemsis mostly long-range electron transfer that occurs by the electrontunneling through the protein media. There is a long-standing problem thatwhich part of protein media is used for the electron tunneling root. As aresult of our detailed analysis, we found that the global electron tunnelingroot is a little winded with a width of a few angstrom, reflecting theproperty of tertiary and secondary structures of the protein and it isaffected by the thermal fluctuation of protein structure. Photoisomerizationof rhodopsin is very unique: The cis-transphotoisomerization ofrhodopsin occurs only around the C11 = C12 bond in the counterclockwisedirection. Its molecular mechanism is resolved by our MD simulation studyusing the structure of rhodopsin which was recently obtained by the X-raycrystallographic analysis. 相似文献
6.
7.
Non-Radiative Dissipation of Absorbed Excitation Energy Within Photosynthetic Apparatus of Higher Plants 总被引:2,自引:1,他引:2
The review deals with thermal dissipation of absorbed excitation energy within pigment-protein complexes of thylakoid membranes in higher plants. We focus on the de-excitation regulatory processes within photosystem 2 (PS2) that can be monitored as non-photochemical quenching of chlorophyll (Chl) a fluorescence consisting of three components known as energy-dependent quenching (qE), state-transition quenching (qT), and photoinhibitory quenching (qI). We summarize the role of thylakoid lumen pH, xanthophylls, and PS2 proteins in qE mechanism. Further, both the similarity between qE and qI and specific features of qI are described. The other routes of thermal energy dissipation are also mentioned, that is dissipation within photosystem 1 and dissipation through the triplet Chl pathway. The significance of the individual de-excitation processes in protection against photo-oxidative damage to the photosynthetic apparatus under excess photon supply is stretched. 相似文献
8.
利用飞秒泵探测技术研究了紫细菌光合反应中心RS601中的超快能量传递过程,通过选择激反应中心中的不同色素,观察到了以不同色素为起点发生在飞秒时域的超快能量传递过程,从细菌去镁叶绿素H到辅助细胞叶绿素B的能量传递发生在约130fs时间尺度,而通过激发色素B则观察到了从B到原始电子供体P的约240fs的超快能量传递,另外,P激发态的超快弛豫过程则说明其上、下激子能级间存在超快的内转换过程,通过对不同色素激发态的能量弛豫过程的分析,说明由原初电子供体H的电子传递过在几个皮秒时间内完成,其中辅助细菌叶绿素B为该电子传递过程中间态。 相似文献
9.
Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides 总被引:2,自引:0,他引:2 下载免费PDF全文
Jakub Pen
ík Ying-Zhong Ma Juan B. Arellano Jan Hla Tomas Gillbro 《Biophysical journal》2003,84(2):1161-1179
The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 1011 photons × pulse−1 × cm−2 were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (~200–500 fs), manifesting itself as a rise in the red part of the Qy absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e→BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10–20 ps) whereas it decays more rapidly in the BChl a region (~1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure. 相似文献
10.
Francesca Fassioli Alexandra Olaya-Castro Simon Scheuring Neil F. Johnson 《Biophysical journal》2009,97(9):2464-2473
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned. 相似文献
11.
Primary Events, Energy Transfer, and Reactions in Photosynthetic Units: Quantum Accumulation in Photosynthetic Oxygen Evolution 总被引:1,自引:0,他引:1
Three independent methods have been used to determine the size of the quantum accumulation unit in green plant photosynthesis. This unit is defined as that group of pigment molecules within which quantal absorption acts must take place leading to the evolution of a single O2 molecule. All three methods take advantage of the nonlinearity of oxygen yield with light dose at very low dosages. The experimental values of this unit size, based on an assumed model for the charge cooperation in O2 evolution, ranging from 800 to 1600, suggest that there is either limited energy transfer between energy-trapping units or chemical cooperation among oxygen precursors formed in several neighboring energy-trapping units. Widely diffusible essential precursors to molecular oxygen are ruled out by these results. Inhibition studies show that O2 evolution is blocked when 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is added to chloroplasts after two preliminary flashes and before a third flash which would have yielded O2 in the absence of DCMU. This experiment is interpreted as evidence that the site of DCMU inhibition is on the oxidizing side of system II. Pretreatment of chloroplasts with large concentrations of Tris, previously believed to destroy O2 evolution by blocking an essential reaction in the electron chain between water and system II, may be alternately interpreted as promoting the dark reversal of the system II light-induced electron transfer. 相似文献
12.
Santhi Ani Joseph S. Mathew Gaurav Sharma Misha Hari Achamma Kurian P. Radhakrishnan V. P. N. Nampoori 《Plasmonics (Norwell, Mass.)》2010,5(1):63-68
We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain
concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium,
and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique
for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a low-power,
stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold
environment. 相似文献
13.
Photosynthetic Unit Organization in a Red Alga : Relationships between Light-Harvesting Pigments and Reaction Centers 总被引:6,自引:6,他引:6 下载免费PDF全文
The relative concentration of biliproteins, phycobilisomes, chlorophyll a, and reaction centers I and II are reported for Neoagardhiella bailyei, a macrophytic red alga collected in the field and compared with Anacystis nidulans, a cyanobacterium cultured in the laboratory. The ratios of chlorophyll to reaction center I, of chlorophyll to reaction center II, and the mass of phycobiliprotein per reaction center II are quite similar in Neoagardhiella and Anacystis, supporting the concept that the red algal chloroplast is derived from a cyanobacterial progenitor. The ratios of reaction center I to reaction center II are about 2.3 in both species. The Anacystis phycobilisome has about 40% of the mass of the Neoagardhiella phycobilisome, 4.9 and 14.9 × 106 daltons, respectively. The reaction center II/phycobilisome ratio is about 1.7 in Anacystis and 4.1 in Neoagardhiella. Phycobilisome size and physical restrictions on phycobilisome packing may be a major constraint on the reaction center II-phycobilisome association and the assembly of the photosynthetic membrane in both the red algae and cyanobacteria. 相似文献
14.
Primary Events, Energy Transfer, and Reactions in Photosynthetic Units: A Connected Model of the Photosynthetic Unit 总被引:1,自引:0,他引:1
The concept of photosynthetic unit (PSU) is reviewed in the light of the authors' results in the fields of fluorescence and luminescence (delayed light). Models of PSU are mainly distinguished by the amount of exciton exchange which is allowed between units. The “separate” model, with its “first-order” character, is not consistent with fluorescence kinetic data. The sigmoidal rise of fluorescence under actinic light is best explained by “nonseparate” models; however, most of these models assume a delocalization of excitons or centers. The “connected” model introduced here is not subject to this criticism. It discloses a new effect (the “îlot” effect): a nonrandom grouping of fluorescent units the consequences of which are discussed. It is noted that a “two-quantum” model for the photochemical reaction gives results very similar to those of the connected model. A relation between luminescence intensity and fluorescence yield is seen as a necessary consequence of the PSU concept. Its meaning is different in separate and nonseparate models. This relation is discussed in connection with the true system II fluorescence emission. 相似文献
15.
Transfer of the Excitation Energy in Anacystis nidulans Grown to Obtain Different Pigment Ratios 总被引:4,自引:0,他引:4 下载免费PDF全文
The blue-green alga, Anacystis nidulans, was grown in lights of different colors and intensities, and its absorption and fluorescence properties were studied. Strong orange light, absorbed mainly by phycocyanin, causes reduction in the ratio of phycocyanin to chlorophyll a; strong red light, absorbed mainly by chlorophyll, causes an increase in this ratio. This confirms the earlier findings of Brody and Emerson (12) on Porphyridum, and of Jones and Myers (8) on Anacystis. Anacystis cultures grown in light of low intensity show, upon excitation of phycocyanin, emission peaks at 600 mmu and 680 mmu, due to the fluorescence of phycocyanin and chlorophyll a, respectively. Changes in the efficiency of energy transfer from phycocyanin to chlorophyll a are revealed by changes in the ratios of these two bands. A decrease in efficiency of energy transfer from phycocyanin to chlorophyll a seems to occur whenever the ratio of chlorophyll a to phycocyanin deviates from the normal. Algae grown in light of high intensity show, upon excitation of phycocyanin, only a fluorescence band at 660 mmu and no band at 680 mmu. This suggests reduced efficiency of energy transfer from phycocyanin to the strongly fluorescent form of chlorophyll a (chlorophyll a(2)) and perhaps increased transfer to the weakly fluorescent form of chlorophyll a (chlorophyll a(1)). 相似文献
16.
W. L. Butler 《Biophysical journal》1972,12(7):851-857
The published reports of flash-induced absorbance changes in the 680-690 nm spectral region, which have been attributed to bleaching of the primary reaction center chlorophyll of photosystem II (PSII) P-680, are discussed in light of what is known about the primary electron acceptor of PSII, C-550. The question of whether the fluorescence yield changes, which accompany the photoreduction of C-550, might influence the measurements of chlorophyll bleaching is examined. The responses attributed to P-680 and their relationship to C-550 indicate that, if the absorbance measurements are valid, P-680 probably functions as the primary electron donor to PSII rather than as a photochemical sensitizer of the primary redox reaction. 相似文献
17.
The role of individual photosynthetic antenna complexes of Photosystem II (PSII) both in membrane organization and excitation energy transfer have been investigated. Thylakoid membranes from wild-type Arabidopsis thaliana, and three mutants lacking light-harvesting complexes CP24, CP26, or CP29, respectively, were studied by picosecond-fluorescence spectroscopy. By using different excitation/detection wavelength combinations it was possible for the first time, to our knowledge, to separate PSI and PSII fluorescence kinetics. The sub-100 ps component, previously ascribed entirely to PSI, turns out to be due partly to PSII. Moreover, the migration time of excitations from antenna to PSII reaction center (RC) was determined for the first time, to our knowledge, for thylakoid membranes. It is four times longer than for PSII-only membranes, due to additional antenna complexes, which are less well connected to the RC. The results in the absence of CP26 are very similar to those of wild-type, demonstrating that the PSII organization is not disturbed. However, the kinetics in the absence of CP29 and, especially, of CP24 show that a large fraction of the light-harvesting complexes becomes badly connected to the RCs. Interestingly, the excited-state lifetimes of the disconnected light-harvesting complexes seem to be substantially quenched. 相似文献
18.
Pelagia Deriziotis Sarah A. Graham Sara B. Estruch Simon E. Fisher 《Journal of visualized experiments : JoVE》2014,(87)
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ''donor'' luciferase enzyme to an ''acceptor'' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA. 相似文献
19.
Genes Involved in the Biosynthesis of Photosynthetic Pigments in the Purple Sulfur Photosynthetic Bacterium Thiocapsa roseopersicina 总被引:1,自引:0,他引:1 下载免费PDF全文
A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested. 相似文献
20.
The polarized absorption, photoacoustic, fluorescence emission, and fluorescence excitation spectra of whole cells of cyanobacteria Synechocystis sp. embedded in a polymer film were measured. The bacteria cells, as it follows from anisotropy of absorption and fluorescence spectra, were even in a non-stretched polyvinyl alcohol film oriented to a certain extent. The measurements were done for such film in order to avoid the deformation of cyanobacteria shapes. Part of the samples was bleached by irradiation with strong polarized radiation with electric vector parallel to the orientation axis of cells. The anisotropy of photoacoustic spectra was higher than that of absorption spectra and it was stronger changed by the irradiation. Polarized fluorescence was excited in four wavelength regions characterised by different contribution to absorption from various bacteria pigments. The shapes of emission spectra were different depending on wavelength of excitation, polarization of radiation, and previous irradiation of the sample. The fluorescence spectra were analysed on Gaussian components belonging to various forms of pigments from photosystems (PS) 1 and 2. The results inform about excitation energy transfer between pools of pigments, differently oriented in the cells. Energy of photons absorbed by phycobilisomes was transferred predominantly to the chlorophyll of PS2, whereas photons absorbed by carotenoids to chlorophylls of PS1. 相似文献