首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditions have been described for the selective growth, serial cultivation, and postconfluent morphological differentiation in vitro of normal adult human uroepithelial cells (HUC) on collagen gel substrates in a serum-free medium without the deliberate addition of undefined components and without a requirement for a polypeptide growth factor. The culture medium used (F12) was the standard Ham's F12 medium (0.3 mM calcium) supplemented with 1 microgram/ml hydrocortisone, 5 micrograms/ml transferrin, 10 micrograms/ml insulin, 0.1 mM nonessential amino acids, 2.0 mM L-glutamine, 2.7 mg/ml D-glucose, 10(-4) M ethanolamine or 10(-4) M phosphoethanolamine, and 5 X 10(-8) M selenium. HUC grown in F12 on Type I collagen gel substrates had a generation time of 33 hours and could be serially passed 3-5 times during log phase of growth (20-25 population doublings) before spontaneously senescing. Transmission electron microscopy showed that cultures of HUC grown entirely in serum-free F12 on collagen gel substrates morphologically differentiate postconfluence to resemble in some respects the stratified uroepithelium in vivo, although neither a basal lamina nor an asymmetric unit membrane develop. The addition of epidermal growth factor (EGF) to the F12 did not improve either the growth rate or the lifespan in vitro of HUC. In contrast, the addition of fetal bovine serum (FBS) to F12 was mitogenic to HUC in a dose-dependent manner in the concentration range 0.01-1.00% (4-400 micrograms/ml protein), but higher concentrations of FBS did not improve growth further. The generation time of HUC in 1% FBS-F12 decreased to 21 hours, and the potential population doublings in vitro increased to 31-36. Small amounts (140 micrograms/ml) of bovine pituitary extract (BPE) were similarly mitogenic to HUC in F12. Altering the calcium concentration in the standard Ham's F12 medium (0.3 mM), however, did not improve the growth of HUC in serum-containing or serum-free medium. Higher calcium concentrations (0.30-0.90 mM) were neither mitogenic nor inhibitory to HUC growth, but resulted in decreasing viability of HUC in growing cultures, suggesting an accelerating rate of cellular differentiation. In contrast HUC in low calcium, serum-free F12 (0.1 mM) failed to stratify and morphologically differentiate even in postconfluent cultures. This failure of HUC to differentiate in low calcium F12 medium did not confer a long-term growth advantage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
A serum-free medium (LEP-1) has been developed for mouse epidermal keratinocytes. LEP-1 consists of "Ca2+-free" Eagle's MEM with non-essential amino acids and seven added supplements (transferrin, 5 micrograms/ml; epidermal growth factor (EGF), 5 ng/ml; hydrocortisone, 0.5 microM; insulin, 5 micrograms/ml; phosphoethanolamine and ethanolamine, each 50 microM; bovine pituitary extract, 180 micrograms of protein/ml). Although serum-free the culture system was dependent for growth on bovine pituitary extract as the only still undefined supplement. LEP-1 supports sustained multiplication of mouse keratinocytes for 25 or more population doublings. A clonal growth assay was developed to investigate the action of growth factors, hormones and other supplements on keratinocytes. Cells grown in LEP-1 (calcium concentration was 0.03 mM) maintained a high proliferative rate and presented the typical morphology of basal epidermal cells. When the calcium concentration of the medium was raised to 1.0 mM, the cells were triggered to differentiate terminally. The epithelial nature of the cells was demonstrated both by electron microscopy and by immunostaining with anti-keratin antibody. The maturation stage of the keratinocytes was defined by several morphological features during the proliferative phase and in terminally differentiating cultures. This serum-free system supported a useful number of cell divisions while keratinocytes retained the capacity to undergo terminal differentiation when given the appropriate stimulus. It provides, therefore, provides a useful model for investigations on growth, differentiation and malignant transformation of epidermal cells in culture.  相似文献   

3.
The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca++ medium (0.09 mM) as measured by incorporation of [3H]thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC50 of about 10 microM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 microM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number over control at 10 microM. These results are of importance since they suggest Ca++ may influence the effect of retinoids on keratinocytes.  相似文献   

4.
Growth and differentiation of keratinocytes in a serum-free medium (keratinocyte growth medium or KGM) was studied and compared to that under conditions in which serum and feeder cell layers were used. Cells were grown in KGM containing 0.1 mM calcium (KGM/low calcium), KGM containing 1.2 mM calcium (KGM/normal calcium), or Dulbecco's modified Eagles medium containing 5% fetal calf serum and 1.8 mM calcium in presence of mitomycin treated 3T3 M cells (DMEM/5% FCS). Plating efficiency and rate of growth were similar in the three media till confluence. In postconfluent cultures, protein and DNA content of cells attached to the plate in KGM/low-calcium dishes decreased as an increased number of cells were shed into the medium. Cell shedding was much less evident in the presence of normal calcium. Cells grown in KGM/low calcium had a higher rate of cell proliferation (3H-thymidine incorporation into cellular DNA) than cells grown in normal calcium. Transglutaminase activity, involucrin content, and cornified envelope formation were greatest in cells grown in KGM/normal calcium, intermediate in cells grown in DMEM/5% FCS, and least in cells grown in KGM/low calcium. Keratin profiles from cells grown in KGM/low calcium showed a lower percentage of high molecular weight bands compared to the keratin profiles from cells grown in the presence of normal calcium. Keratinocytes in KGM/low calcium grew as a monolayer of cuboidal cells with few features of differentiation, whereas cells grown in KGM/normal calcium stratified into multilayered islands (3-5 layers) surmounted by 2-4 layers of enucleated cells with thickened cornified envelopes. Cells grown in KGM/normal calcium also contained tonofilaments and lamellar bodies unlike cells grown in KGM/low calcium. Cells grown in DMEM/5% FCS also formed stratified layers comparable to cells grown in KGM/normal calcium but lacked cornified cells, keratohyalin granules, tonofilament bundles, and lamellar bodies. These studies indicate the usefulness of serum-free conditions for the culture of human keratinocytes and confirm the importance of extracellular calcium in keratinocyte differentiation.  相似文献   

5.
Skin from Gottingen minipigs was used as a source of tissue for organ and cell culture and compared to human skin for growth conditions and sensitivity to irritants. Optimal organ culture conditions were determined, based on the preservation of the histological structure. These included serum-free, growth factor-free conditions with a calcium concentration of 1.5mM. Formulations in which the calcium concentration were low (0.075-0.15mM) failed to support tissue viability (even in the presence of dialyzed serum). Epidermal keratinocytes were grown from tissue explants and as single cells from enzyme-disrupted tissue. Optimal keratinocyte growth was achieved using a serum-free, growth factor-supplemented culture medium with a calcium concentration of 0.15mM. Fibroblasts were optimally grown from explant cultures using a medium with 1.5mM calcium and 10% fetal bovine serum. The conditions that were optimal for maintenance of intact pig skin, as well as for the isolated cells, are the same conditions that have been shown previously to be optimal for intact human skin and skin cells. In additional studies, pig skin keratinocytes and fibroblasts were exposed to a panel of contact irritants and contact sensitizers. Using growth inhibition as the response, the median effective dose values with each agent were very similar to the values previously determined for human epidermal keratinocytes and human dermal fibroblasts. Taken together, these data suggest that the skin from the Gottingen minipig can be used as a surrogate for human skin in ex vivo skin safety studies.  相似文献   

6.
The effects of growth factors, hormones, and calcium on the growth and differentiation of secondary cultures of normal human prokeratinocytes, i.e., proliferative keratinocytes, derived from adult or neonatal skin were determined by culture in serum-free basal medium, MCDB 153. Clonal growth was achieved when MCDB 153 was supplemented with either epidermal growth factor (EGF) or bovine pituitary extract (BPE), provided insulin was present. In the absence of insulin, however, both EGF and BPE were required for clonal growth. Using this assay, it was established that colony-forming efficiency is independent of calcium concentrations above 0.03 mM and averages 56%; colony size, however, was influenced by calcium and EGF concentrations. Optimal clonal growth occurred in medium containing 10 ng/ml EGF and 0.3 mM calcium. By contrast, differentiation was enhanced by the combination of low EGF (0.1 ng/ml) and high calcium (2 mM). This suggests that an inverse relationship exists between the growth response (extent of clonal growth) and the differentiation response (extent of differentiation). These results suggest that proliferation and differentiation are regulated in an integrated manner. Detailed kinetic studies and cytofluorimetric and autoradiographic analyses also showed that exponentially growing secondary cultures of adult and neonatal prokeratinocytes have a 24-hour cell generation time with G1, S, G2, and M phases of 12, 8, 3, and 1 hours, respectively. In addition, the data show that such cells can be growth arrested in medium that does not induce differentiation and that such a procedure significantly limits the cell's subsequent proliferative potential. Furthermore, prolonged culture of adult (> 30 population doublings) and neonatal prokeratinocytes (> 50 population doublings) is associated with senescence and the G1 arrest of noncycling cells.  相似文献   

7.
The proliferation and differentiation of mouse epidermal cells can be sequentially analyzed by modification of extracellular calcium. Newborn cells cultured in low calcium medium (less than 0.1 mM) proliferate as a monolayer and maintain a typical basal cell phenotype in culture but have a limited proliferative capacity and short lifespan. Elevation of the magnesium content of the culture medium from 1 to 5 mM stimulated the proliferation of newborn mouse (1-3 days old) keratinocytes. Maximal DNA synthesis rates, as determined on day 5 of culture, were up to 2-3-fold higher in the magnesium-enriched cultures. Exposure to high magnesium caused 3-4-fold increases in the DNA content of newborn keratinocyte cultures, and extended the confluent phase of epidermal cell growth to over 10 days. Other divalent cations (strontium, copper, zinc, nickel, beryllium, and barium) did not improve keratinocyte growth in culture. Keratinocytes from the tail skin of adult (3 months old) mice displayed an absolute requirement for high phosphate in the culture medium. The medium containing an optimal (10 mM) phosphate concentration prevented the cell detachment caused by the standard low (1 mM) phosphate medium, and in combination with an elevated magnesium content (10-15 mM) it markedly increased both DNA synthesis rates and DNA content of the adult cell cultures. Optimally growing, newborn or adult cultures contained less cells in the G1 phase of the cell cycle and more cells in S and G2 +M. The addition of phosphate and magnesium per se did not induce keratinocyte differentiation and did not interfere with the high calcium (1 mM)-induced differentiation.  相似文献   

8.
Summary The melanoma of Sinclair swine exhibits several characteristics similar to human melanoma but demonstrates an unusually high incidence of spontaneous regression. A total of 66 finite cell lines derived from 21 swine melanotic lesions, both cutaneous and visceral, were studied in vitro over their life spans of up to 14 months. The growth characteristics of the cultures varied with the age of the swine from which the tumors were obtained. Cell cultures of tumors obtained from swine aged less than 2 months grew steadily in culture with a population-doubling time of 120 to 180 hr until growth and division ceased after a maximum of 25 to 35 population doublings (6 to 8 passages). Cell culture of tumors obtained from swine aged 3 months or older showed a biphasic growth pattern with an early slow growth rate (population-doubling time 120 to 160 hr), which shifted after 3 to 6 passages to a faster rate (80 to 110 hr population-doubling time) until termination of growth and division after a maximum of 75 to 85 population doublings (18 to 20 passages). The cultures were morphologically heterogeneous including cuboidal, spindle and dendritic cell types. Electron microscopy showed classic melanosomes only in the primary and passage 1 cultures although vesicular inclusions were numerous in later-passage cells. However, continued melanin synthesis was indicated by the spectroscopic characteristics of material obtained from medium of passage 8 cultures and by DOPA staining of cultures as advanced as passage 18. This work was supported by a grant from the NIH, NCI (2 P01 CA 08023-11A1).  相似文献   

9.
Epithelial cells derived from bovine pancreatic duct have been grown continuously in culture for 30 weeks (approximately 90 doublings of the cell population). The cells were grown in Eagle's minimal essential medium supplemented with 10% heat-inactivated fetal bovine serum, 2 mM glutamine, 0.1 mM nonessential amino acids, and antibiotics. In confluent cultures, the cells are multilayered and form circular structures. When tested at various passages, the cells neither formed colonies in soft agar nor produced tumors after inoculation into athymic, nude mice. Hydrocortisone (1 and 5 microgram per ml) and insulin (1,5 and 10 microgram per ml) had no effect on the growth of the cells. beta-Retinyl acetate inhibited growth rate and cell yield at a concentration of 5 microgram per ml but was not growth-inhibitory at lower concentrations. By electron microscopy the cells have numerous mitochondria, Golgi and microvilli. Mucous droplets were observed in a small proportion of the cells. Desmosome-like structures and occluding junctions were observed more frequently between cells that had been transferred as aggregates than between cells transferred as single cells. Cytochemical studies indicated that some cells produce PAS positive granules that were not removed after treatment of the cultures with diastase. Eleven cell clones were isolated from the mass culture. The growth rates of the clones are different as well as the period of time in which the clones can be propagated in vitro.  相似文献   

10.
K Kaji 《Human cell》1988,1(2):188-197
The purpose of this review is to introduce a simple and inexpensive culture method for human umbilical blood vessel endothelial cells. The medium used is MCDB-104 supplemented with 10% fetal bovine serum, 70 ng/ml endothelial cell growth factor from new-born bovine brains, 10 ng/ml murine epidermal growth factor, and 100 micrograms/ml heparin. The culture dishes are coated with gelatin. Under these conditions, endothelial cells from human vessels were grown with doubling times of 18-22 hrs and reached saturation densities of 8-12 x 10(4) cells/cm2. To determine the lifespan of the endothelial cells, the cells were serially subcultivated weekly at an inoculum size of 1,000 cells/cm2. Human endothelial cells from umbilical vein and artery were grown for 21 to 37 passages with 55 to 125 population doublings. This culture method seems to be useful for studying cell proliferation and functions of human endothelial cells.  相似文献   

11.
Genomic instability and bystander effects have recently been linked experimentally both in vivo and in vitro. The aim of the present study was to determine if medium from irradiated cells several passages distant from the original exposure could initiate apoptosis in unirradiated cells. Human keratinocytes (from the HPV-G cell line) were irradiated with 0.5 Gy or 5 Gy gamma rays. Medium was harvested at each passage up to the 7th passage (approximately 35 population doublings) postirradiation and transferred to unirradiated keratinocytes. Intracellular calcium levels, mitochondrial membrane potential, and the level of reactive oxygen species were all monitored for 24 h after medium transfer. Rapid calcium fluxes (within 30 s), loss of mitochondrial membrane potential, and increases in reactive oxygen species (from 6 h after medium transfer) were observed in the recipient cells. There was no significant difference between medium conditioned by cells irradiated with 0.5 or 5 Gy. The effect of medium from progeny was the same as the initial effect reported previously and did not diminish with increasing passage number. The data suggest that initiating events in the cascade that leads to apoptosis are induced in unirradiated cells by a signal produced by irradiated cells and that this signal can still be produced by the progeny of irradiated cells for several generations.  相似文献   

12.
Summary Epithelial cells derived from bovine pancreatic duct have been grown continuously in culture for 30 weeks (approximately 90 doublings of the cell population). The cells were grown in Eagle's minimal essential medium supplemented with 10% heat-inactivated fetal bovine serum, 2 mM glutamine, 0.1 mM nonessential amino acids, and antibiotics. In confluent cultures, the cells are multilayered and form circular structures. When tested at various passages, the cells neither formed colonies in soft agar nor produced tumors after inoculation into athymic, nude mice. Hydrocortisone (1 and 5 μg per ml) and insulin (1,5 and 10 μg per ml) had no effect on the growth of the cells. β-Retinyl acetate inhibited growth rate and cell yield at a concentration of 5 μg per ml but was not growth-inhibitory at lower concentrations. By electron microscopy the cells have numerous mitochondria, Golgi and microvilli. Mucous droplets were observed in a small proportion of the cells. Desmosome-like structures and occluding junctions were observed more frequently between cells that had been transferred as aggregates than between cells transferred as single cells. Cytochemical studies indicated that some cells produce PAS positive granules that were not removed after treatment of the cultures with diastase. Eleven cell clones were isolated from the mass culture. The growth rates of the clones are different as well as the period of time in which the clones can be propagated in vitro. This work was supported in part by Y01 CP 60204 and N01 CP 43237.  相似文献   

13.
14.
Calcium modulation of keratinocyte growth in culture was studied by both transmission (TEM) and scanning electron microscopy (SEM). Under standard culture conditions (1.2-1.8 mM calcium), cells were connected by desmosomes and stratified to 4-6 cell layers. Many aspects of in vitro epidermal maturation were analogous to the in vivo process, with formation of keratohyalin granules, loss of nuclei, formation of cornified envelopes and shedding of cornified cells containing keratin filaments. When the medium calcium concentration was lowered to 0.02-0.1 mM, the pattern of keratinocyte growth was strikingly changed. Cells grew as a monolayer with no desmosomal connections and proliferated rapidly, shedding largely non-cornified cells into the medium. Large bundles of keratin filaments were concentrated in the perinuclear cytoplasm. The elevation of extracellular calcium to 1.2 mM induced low calcium keratinocytes to stratify, keratinize and cornify in a manner analogous to that seen when plated in standard calcium medium. The earliest calcium-induced ultrastructural change was the asymmetric formation of desmosomes between adjacent cells. Desmosomal plaques with associated tonofilaments were observed 5 min after calcium addition; symmetric desmosomes were formed within 1-2 h. This system is presented as a useful model for the study of the regulation of desmosome assembly and disassembly.  相似文献   

15.
In this study we examined the different aspects of the pathway leading to the differentiation of keratinocytes as a function of time in culture and calcium concentration of the culture medium. Human neonatal foreskin keratinocytes were grown in a serum-free, defined medium containing 0.07, 1.2, or 2.4 mM calcium and assayed for the rate of growth and protein synthesis, involucrin content, transglutaminase activity, and cornified envelope formation at preconfluent, confluent, and postconfluent stages of growth. We observed that keratinocytes grown to postconfluence in all calcium concentrations showed an increased protein/DNA ratio and an increased rate of membrane-associated protein synthesis. Extracellular calcium concentrations did not have a clear influence on these parameters. However, preconfluent and confluent keratinocytes grown in 0.07 mM calcium showed markedly retarded differentiation at all steps, i.e., involucrin synthesis, transglutaminase activity, and cornified envelope formation. Within 1 week after achieving confluence, these keratinocytes began synthesizing involucrin and transglutaminase and developed the ability to form cornified envelopes. Cells grown in 1.2 and 2.4 mM calcium synthesized involucrin and transglutaminase prior to confluence and were fully competent to form cornified envelopes by confluence. Thus external calcium-regulated keratinocyte differentiation is not an all or none phenomenon, but rather it is the rate at which keratinocytes differentiate that is controlled by calcium. We conclude that either or both higher extracellular calcium concentration and the achievement of cell-cell contacts lead to a coordinate increase of at least two precursors--involucrin content and transglutaminase activity--required for cornified envelope formation. We speculate that a critical level of cytosolic calcium, achieved by increased extracellular calcium or by achievement of intercellular communication established by cell-cell contact, may trigger mechanisms required for initiation of keratinocyte differentiation.  相似文献   

16.
The steroid hormone 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) regulates cell proliferation and differentiation. Intracellular calcium (Cai) concentrations play a crucial role in these events. From our previous studies, we have demonstrated a calcium receptor (CaR) in keratinocytes which appears to regulate the initial release of Cai from intracellular stores in response to extracellular calcium (Cao) and so is likely to participate in the differentiation process. In this study, we determined whether the ability of 1,25(OH)2D3 to enhance Ca++ -induced differentiation was mediated at least in part through changes in the CaR. Keratinocytes were grown in keratinocyte growth medium (KGM) with 0.03 mM, 0.1 mM, or 1.2 mM Ca and treated with 10(-8) M 1,25(OH)2D3 till harvest after 5, 7, 14, and 21 days. CaR mRNA levels were quantitated by polymerase chain reaction. The results were compared to the ability of 1,25(OH)2D3 to enhance calcium-stimulated increases in Cai. In cells grown in 0.03 mM Ca, the CaR mRNA levels decreased with time. 1,25(OH)2D3 stimulated the levels at 5 days and prevented the falloff over the subsequent 16 days. On the other hand, in cells grown in 0.1 or 1.2 mM Ca, the message levels remained high, and 1,25(OH)2D3 had no further effect. To study the functional relationship, we harvested cells after 5 and 7 days in culture following a 24 h treatment with 1,25(OH)2D3 or vehicle to measure the Cai response to 2 mM Cao. The preconfluent cells grown in 0.03 mM Ca showed a nearly twofold increase in the Cai response to Cao when pretreated with 1,25(OH)2D3, whereas the confluent cells and those grown in 1.2 mM Ca showed no enhancement by 1,25(OH)2D3. Studies with 45Ca influx into keratinocytes revealed that 1,25(OH)2D3 enhanced the influx in preconfluent and confluent cells when grown in KGM containing 0.03 mM Ca but not in cells grown in 1.2 mM calcium. We conclude that 1,25(OH)2D3 maintains the CaR mRNA levels in cells grown in 0.03 mM Ca, thus maintaining their responsiveness to Cao and so ensuring their ability to differentiate in response to the calcium signal.  相似文献   

17.
During the wound healing process lysis of basement membranes precedes keratinocyte migration into the wound bed. We studied, in vitro, whether this degradation of basement membranes could be regulated by transforming growth factor-beta 1 (TGF-beta 1), which is known to accelerate wound healing in vivo. Transforming growth factor-beta 1 was found to increase the expression of both 92- and 72-kDa type IV collagenases (gelatinases) in cultured human mucosal and dermal keratinocytes. The 92-kDa enzyme predominated in both unstimulated and stimulated cultures. The 92-kDa form was stimulated over 5-fold, and the other form by a factor of 2-3. This increase in the synthesis of type IV collagenases was associated with a marked increase in the mRNA levels of these enzymes as well. The induction of the 92-kDa enzyme was similar in culture medium containing either 0.15 or 1.2 mM calcium chloride. Rat mucosal keratinocytes secreted only 92-kDa type IV collagenase, the secretion of which was not regulated by TGF-beta 1. Also, TGF-beta 1 did not cause any significant induction (maximum about 1.2-fold) of either type IV collagenase in human gingival fibroblasts. The induction levels of both collagenases in human keratinocytes were independent of the type of the extracellular matrix the cells were grown on. However, the basement membrane matrix (Matrigel) activated about half of the 92-kDa type to its 84-kDa active form. The data suggest that TGF-beta 1 has a specific function in up-regulating the expression of type IV collagenases in human keratinocytes, offering a possible explanation of how keratinocytes detach from basement membranes prior to the migration over the wound bed.  相似文献   

18.
S H Kovacs  P F Agris 《In vitro》1979,15(5):329-341
The melanoma of Sinclair swine exhibits several characteristics similar to human melanoma but demonstrates an unusually high incidence of spontaneous regression. A total of 66 finite cell lines derived from 21 swine melanotic lesions, both cutaneous and visceral, were studied in vitro over their life spans of up to 14 months. The growth characteristics of the cultures varied with the age of the swine from which the tumors were obtained. Cell cultures of tumors obtained from swine aged less than 2 months grew steadily in cluture with a population-doubling time of 120 to 180 hr until growth and division ceased after a maximum of 25 to 35 population doublings (6 to 8 passages). Cell cultures of tumors obtained from swine aged 3 months or older showed a biphasic growth pattern with an early slow growth rate (population-doubling time 120 to 160 hr), which shifted after 3 to 6 passages to a faster rate (80 to 110 hr population-doubling time) until termination of growth and division after a maximum of 75 to 85 population doublings (18 to 20 passages). The cultures were morphologically heterogeneous including cuboidal, spindle and dendritic cell types. Electron microscopy showed classic melanosomes only in the primary and passage 1 cultures although vesicular inclusions were numerous in later-passage cells. However, continued melanin synthesis was indicated by the spectroscopic characteristics of material obtained from medium of passage 8 cultures and by DOPA staining of cultures as advanced as passage 18.  相似文献   

19.
The effect of 1,25(OH)(2)D(3) on the intracellular calcium, (Ca(+2))i, in both cultured human keratinocytes and in cultured human dermal fibroblasts was investigated. When the intracellular calcium (Ca(+2))i in cultured human keratinocytes, grown in a serum-free medium containing 1.8 mM calcium, was measured by the fluorescent calcium-indicator, Furu-2, the (Ca(+2)i increased 154%, 202%, and 409% over the control value after incubation with 1,25(OH)(2)D(3) at 10(-10) m, 10(-8) m, and 10(-6) m, respectively. This response was immediate (15 seconds), specific (no effect with either 25(OH)D(3) at 10(-8) m or vitamin D(3) at 10(-8) m), and occurred with or without EGTA in the medium. In contrast, 1,25(OH)(2)D(3) did not increase the (Ca(2+))i in either cultured human keratinocytes that were grown in low calcium (0.05 mm), serum-free medium or in cultured human dermal fibroblasts that were grown in medium containing 0.05 mm calcium and 1% serum. The effect of 1,25(OH)(2)D(3) on the the turnover of phosphatidylinositol was investigated as a possible cause for the observed increase in (Ca(+2)i. Cultured human keratinocytes that were incubated with (3)H-inositol demonstrated a 50 % +/- 10% increase in the triphosphated, plasma membrane-bound metabolite of phosphatidylinositol, PIP(2), by 15 seconds, followed by a rapid decrease at 30 seconds, then a return toward basal levels by 1 minute. Lysophosphatidylinositol, which results from the sn-2 deacylation of phosphatidylinositol by phospholipase A(2), decreased 20% +/- 8% within 30 seconds, then increased to 200% +/- 10% of the control value by 5 minutes. The accumulation of IP(3) was increased 50% to 100% above the control value within 30 seconds and this increase was substained during the 5-minute incubation period. Stimulation of phosphatidylinositol turnover by 1,25(OH)(2)D(3) was not detected in either cultured human keratinocytes that were grown in serum-free, low calcium medium or in cultured human dermal fibroblasts that were grown in 1% serum.  相似文献   

20.
Monolayer cultures have been derived from bovine embryonic pancreatic cells grown in medium CMRL-1969 supplemented with foetal calf serum. The isolate has been subcultivated up to 10 population doublings. Insulin secretion from the cells into the culture medium declined with increasing passages. Of several insulin secretagogues, glucagon was found to be effective in potentiating insulin release from the cultivated cells into the medium. Insulin secretion rose to approximately 600 μU/culture/day in the presence of glucagon as compared to an average of 10 μU/culture/day in the control. This may be the first demonstration of a beta cell line developed from bovine embryonic pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号