首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two tritrophic systems were experimentally coupled in the present study. One system consisted of a cabbage plant ( Brassica oleracea ), diamondback moth larvae ( Plutella xylostella ) and their parasitic wasp ( Cotesia plutellae ). The other system consisted of a cabbage plant, cabbage butterfly ( Pieris rapae ) larvae and their parasitic wasp ( Cotesia glomerata ). First, we demonstrated that parasitism by C. glomerata and C. plutellae increased and decreased, respectively, on plants infested by both herbivore species than on plants infested by their host larvae alone. We then demonstrated that adult Pl. xylostella oviposited preferentially on plants infested with Pi. rapae , whereas adult Pi. rapae revealed no significant preferences between uninfested plants or plants infested with Pl. xylostella . Based on the present results and those of our previous study, we discuss the oviposition preferences of herbivores in tritrophic contexts.  相似文献   

2.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

3.
Summary Induction of plant defence against herbivores may include the attraction by volatile infochemicals of natural enemies of the herbivore. The emitted volatiles that mediate this attraction may also affect the behaviour of the herbivore itself. In this paper we investigate the response of the herbivorous spider miteTetranychus urticae and the predatory mitePhytoseiulus persimilis towards volatiles whose production is induced in detached Lima bean leaves. Detached uninfested Lima bean leaves were incubated on wet cotton wool on which bean leaves infested with spider mites (T. urticae) were present simultaneously or had been present previously. These treatments induce the production of volatile infochemicals in the uninfested bean leaf tissue: predatory mites are attracted and spider mites are deterred. These are the first data on the response of predators and herbivores to plant volatiles whose production was induced in detached uninfested leaves.  相似文献   

4.
Although it is well known that the application of broad‐spectrum synthetic insecticides reduces the effectiveness of natural enemies, the details of the actual mechanisms, including the lethal and sublethal effects of this reduction, are not fully understood. The inhibitory effects of a pyrethroid insecticide (permethrin), Adion 20% EC on the flight responses, host‐searching behaviour and foraging behaviour of Cotesia vestalis (Hymenoptera: Braconidae), a larval parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), were investigated under laboratory conditions. In choice trials, the wasps showed significant preference for P. xylostella‐infested Komatsuna plants over insecticide‐treated plants, suggesting an inhibitory effect of the insecticide on the flight response of C. vestalis. When offered a pair of plants, the wasps showed a significant preference for P. xylostella‐infested plants compared to uninfested plants. However, significantly more wasps were attracted to infested permethrin‐treated plants than to uninfested plants, suggesting that the wasps are attracted to the volatile infochemicals from the infested plants, even if treated with permethrin. The searching time was significantly shorter and the mortality of C. vestalis adults on the insecticide‐treated plants significantly higher than in the control plants treated with distilled water. These results suggest that the application of the insecticide had an inhibitory effect on the wasps’‐searching behaviour and consequently reduced the effectiveness of C. vestalis as a biological control agent against P. xylostella. In addition, the strength of the inhibitory effect of permethrin on the attraction of the wasps to the plants is critical to the survival of C. vestalis. Our results suggest that the attraction of the wasps to the permethrin‐treated infested plants increases the risk of their exposure to this insecticide.  相似文献   

5.
The ‘enemy‐free space’ hypothesis predicts that herbivorous insects can escape their natural enemies by switching to a novel host plant, with consequences for the evolution of host plant specialisation. However, if natural enemies follow herbivores to their novel host plants, enemy‐free space may only be temporary. We tested this by studying the colonisation of the introduced tree Eucalyptus grandis (Hill) Maiden (Myrtaceae) by insects in Brazil, where various species of herbivores have added eucalyptus to their host plant range, which consists of native myrtaceous species such as guava. Some herbivores, for example, Thyrinteina leucoceraea Ringe (Lepidoptera: Geometridae), cause outbreaks in eucalyptus plantations but not on guava, possibly because eucalyptus offers enemy‐free space. We sampled herbivores (mainly Lepidoptera species) and natural enemies on eucalyptus and guava and assessed parasitism of Lepidoptera larvae on both host plant species during ca. 2 years. Overall, predators were encountered more frequently on guava than on eucalyptus. In contrast, parasitoids were encountered equally and parasitism rates of Lepidoptera larvae were similar on both host plants. This indicates that herbivores may escape some enemies by moving to a novel host plant. However, this escape may be temporary and may vary with time. We argue that studying temporal and spatial patterns of enemy‐free space and the response of natural enemies to host use changes of their herbivorous prey is essential for understanding the role of natural enemies in the evolution of host plant use by herbivorous arthropods.  相似文献   

6.
In this study we investigated whether in a two‐choice set‐up the parasitoid Cotesia rubecula (Marshall) (Hymenoptera, Braconidae) distinguishes between volatiles emitted by Arabidopsis thaliana (L.) Heynh. (Brassicaceae) infested with its host, Pieris rapae (L.) (Lepidoptera: Pieridae) and Arabidopsis infested with non‐host herbivores. Four non‐host herbivore species were tested: the caterpillars Plutella xylostella (L.) (Lepidoptera: Plutellidae) and Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), both chewing insects, the spider mite Tetranychus urticae (Koch) (Acari: Tetranychidae), which punctures parenchymal cells, and the aphid Myzus persicae (Sulzer) (Hemiptera: Aphidoidea), which is a phloem‐feeder. Compared with undamaged plants, C. rubecula females were more attracted to Arabidopsis plants infested by P. rapae, P. xylostella, S. exigua, or T. urticae, but not to plants infested by M. persicae. The parasitoids preferred host‐infested plants to spider mite‐ or aphid‐infested plants, but not to plants infested with non‐host caterpillars (P. xylostella or S. exigua). The data show that when Arabidopsis plants are infested with a leaf tissue‐damaging herbivore they emit a volatile blend that attracts C. rubecula females and the wasps only discriminate between a host and non‐host herbivore when the type of damage is different (chewing vs. piercing). When Arabidopsis is infested with a herbivore that hardly damages leaf tissue, C. rubecula females are not attracted. These results may be explained by differences in the amount of damage and in the relative importance of different signal‐transduction pathways induced by different types of herbivores.  相似文献   

7.
We have examined the effects of herbivore diversity on parasitoid community persistence and stability, mediated by nonspecific information from herbivore‐infested plants. First, we investigated host location and patch time allocation in the parasitoid Cotesia glomerata in environments where host and/or nonhost herbivores were present on Brassica oleracea leaves. Parasitoids were attracted by infochemicals from leaves containing nonhost herbivores. They spent considerable amounts of time on such leaves. Thus, when information from the plant is indistinct, herbivore diversity is likely to weaken interaction strengths between parasitoids and hosts. In four B. oleracea fields, all plants contained herbivores, often two or more species. We modelled parasitoid–herbivore communities increasing in complexity, based on our experiments and field data. Increasing herbivore diversity promoted the persistence of parasitoid communities. However, at a higher threshold of herbivore diversity, parasitoids became extinct due to insufficient parasitism rates. Thus, diversity can potentially drive both persistence and extinctions.  相似文献   

8.
9.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

10.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

11.
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.  相似文献   

12.
Summary We studied interactions among collards, Brassica oleracea var. acephala, the diamondback moth (DBM), Plutella xylostella (Lepidoptera: Yponomeutidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae) by manipulating plant nitrogen (N) concentrations in field and laboratory experiments. Parasitoid abundance strongly reflected DBM abundance and was related to total leaf N. Parasitism rates were high (70.7%) and density-independent. Wasp sex ratios varied markedly (3–93% female) in response to the herbivores, the plants, or both. Higher proportions of female wasps emerged from DBM larvae on plants with high leaf N than on unfertilized plants. More female wasps also emerged from larvae parasitized as larger instars. We suggest that wasps have the potential to control DBM populations through long-term numerical responses mediated by variable sex ratios.  相似文献   

13.
A major concern regarding the deployment of insect resistant transgenic plants is their potential impact on non-target organisms, in particular on beneficial arthropods such as predators. To assess the risks that transgenic plants pose to predators, various experimental testing systems can be used. When using tritrophic studies, it is important to verify the actual exposure of the predator, i.e., the presence of biologically active toxin in the herbivorous arthropod (prey). We therefore investigated the uptake of Cry1Ab toxin by larvae of the green lacewing (Chrysoperla carnea (Stephens); Neuroptera: Chrysopidae) after consuming two Bt maize-fed herbivores (Tetranychus urticae Koch; Acarina: Tetranychidae and Spodoptera littoralis (Boisduval); Lepidoptera: Noctuidae) by means of an immunological test (ELISA) and the activity of the Cry1Ab toxin following ingestion by the herbivores. Moreover, we compared the activity of Cry1Ab toxin produced by Bt maize to that of purified toxin obtained from transformed Escherichia coli, which is recommended to be used in toxicity studies. The activity of the toxin was assessed by performing feeding bioassays with larvae of the European corn borer (Ostrinia nubilalis (Hübner); Lepidoptera: Crambidae), the target pest of Cry1Ab expressing maize. ELISA confirmed the ingestion of Bt toxin by C. carnea larvae when fed with either of the two prey species and feeding bioassays using the target pest showed that the biological activity of the Cry1Ab toxin is maintained after ingestion by both herbivore species. These findings are discussed in the context of previous risk assessment studies with C. carnea. The purified Cry1Ab protein was more toxic to O. nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations according to ELISA measurements. Possible reasons for these findings are discussed.  相似文献   

14.
The well documented biochemical profile of Brassicaceae, oligophagy of the herbivore Plutella xylostella (L.) (Lepidoptera: Plutellidae), and host specialization of the parasitoid Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) provide an ideal system for investigating tritrophic interactions mediated by nutritional quality of plants. We evaluated the bottom-up effects of five soil fertility regimes on nutritional quality of canola (Brassica napus L.) and then on several fitness correlates of female and male D. insulare as mediated through P. xylostella. Variation in soil fertility influenced the nutritional quality of host plants and this in turn affected the performance of D. insulare. In general, D. insulare performed best on plants grown with 3.0 g fertilizer pot−1; these plants had 2.06-, 3.77-, and 1.02-fold more nitrogen, phosphorous and potassium, respectively than ones grown without any added fertilizer. P. xylostella escape from D. insulare was highest (32%) on plants grown at 1.0 g fertilizer, and this could be attributed to both physical and physiological defense mechanisms mediated by host plant nutritional quality. Plant stress and plant vigor are competing paradigms pertaining to the performance of herbivorous insects on their host plants. These hypotheses were originally proposed to predict responses of herbivores, but may also explain the effects of plant quality on koinobiont parasitoids, such as D. insulare.  相似文献   

15.
1. Foraging decisions of parasitoids are influenced by host density via density‐mediated indirect interactions. However, in the parasitoid's environment, non‐suitable herbivores are also present. These non‐hosts also occur in different densities, which can affect a parasitoid's foraging behaviour. 2. The influence of non‐host densities can be expressed during the first phase of the foraging process, when parasitoids use plant volatiles to locate plants infested by their host. They may also play a role during the second phase, when parasitoids use infochemicals from the host and plant to locate, recognise and accept the host. 3. By using laboratory and field setups, it was studied whether the density of non‐host herbivores influences these two phases of the foraging behaviour of the parasitoid Cotesia glomerata as well as the parasitoid's efficiency to find its host, Pieris brassicae caterpillars. 4. The findings show that a high non‐host density, regardless of the species used, negatively affected parasitoid preference for host‐infested plants, but that the behaviour on the plant and the total host‐finding efficiency of the parasitoids were not influenced by non‐host density. 5. These results are discussed in the context of density‐mediated indirect interactions.  相似文献   

16.
Gassmann AJ 《Oecologia》2005,145(4):575-585
Trade-offs can maintain genetic diversity and constrain adaptation; however, their magnitude may depend on ecological factors. I considered whether resistance to the herbicide triazine in Amaranthus hybridus (Amaranthaceae) imposed the trade-off of increasing susceptibility to herbivorous insects. I grew triazine-resistant and triazine-susceptible plants under contrasting levels of light and fertilization, and quantified susceptibility to herbivores using the specialist Disonycha glabrata (Coleoptera: Chrysomelidae) and the generalist Trichoplusia ni (Lepidoptera: Noctuidae). Resistance to triazine increased susceptibility to both species of herbivorous insects, as manifested by greater feeding preference, growth, and survival of herbivores. However, these effects were more pronounced with T. ni and for plants grown under high light. My results demonstrate the presence of a trade-off between resistance to triazine and susceptibility to herbivorous insects that may in turn impose an ecologically based fitness cost, and illustrate the potential for this cost to vary across environments.  相似文献   

17.
A population of the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) (DBM) was recently found to infest sugar snap- and snowpeas in the Rift Valley in Kenya, causing heavy damage. The influence of this host shift on host location preferences of two parasitoids was investigated: The indigenous Diadegma mollipla (Holmgren) regarded as a relative generalist, and Diadegma semiclausum(Hellen), regarded as highly specific to DBM. The attractiveness of different odour sources was compared for the two parasitoid species using a Y-tube olfactometer using naïve females. D. mollipla was not significantly attracted to any cabbage related odours but showed a significant preference for the DBM infested pea plant when tested against clean air. D. semiclausum was highly attracted to the undamaged cabbage plant and odours related to cabbage. On the other hand, peas infested with DBM, showed no attractiveness to this parasitoid. The results showed that specialisation of D. semiclausum is mediated by host plant signals, associated with crucifers, which are not encountered in DBM feeding on peas. For D. mollipla,although a frequent parasitoid on DBM in crucifers, volatiles emitted by these plants might not be used as primary cues for host location. This species may respond largely to chemicals yet unknown and associated with a variety of plant-herbivore interactions.  相似文献   

18.
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free‐choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual‐choice Y‐tube olfactometry experiments, D. rapae females discriminated between B. brassicae‐infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.  相似文献   

19.
Abstract

In response to herbivory by cabbage white butterfly (Pieris rapae) larvae, crucifer plants emit green leaf volatiles (GLVs) that attract Cotesia glomerata, a carnivorous natural enemy of the larvae. To artificially increase GLV production by crucifers, we created transgenic Arabidopsis that constitutively expressed cucumber cytosolic lipoxygenase (CsLOX2). Transgenic Arabidopsis (p35S::CsLOX2.6 and p35S::CsLOX2.14) infested with P. rapae larvae were more attractive to C. glomerata than wild type (wt) and produced more jasmonic acid. p35S::CsLOX2.14 had a higher incidence of parasitism of the larvae than did wt. Infested transgenic plants emitted more (Z)-3-hexenyl acetate, (E)-β-ocimene, (Z)-β-ocimene, and DMNT than infested wt plants; (Z)-3-hexenyl acetate is known to attract Cotesia wasps. Transforming cruciferous crops with cytosolic CsLOX2 could aid integrated pest management via tritrophic interactions.  相似文献   

20.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号