首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetically modified acetylcholinesterase (AChE) from Drosophila melanogaster (dm) and from commercial sources, Electric eel (ee), Bovine erythrocites (be) and Human erythrocites (he), were investigated as biological receptors for the detection of methamidophos pesticide based on inhibition studies. Most engineered variant of AChE from dm showed enhanced sensitivity toward methamidophos pesticide. Among 24 dmAChE variants tested, 12 presented a sensitivity comparable to the commercially available eeAChE, but higher than AChEs from be and he. Four were found more sensitive and six others were insensitive to methamidophos insecticide. The D375G,Y370F,Y374A,F376L mutant was the most sensitive, with a ki value of 2.2 X 10(6) mol(-1) L min(-1), three orders of magnitude higher than eeAChE (1.1 X 10(3) mol(-1) L min(-1)). The sensor constructed with genetically modified enzyme showed better characteristics with respect to detection limit and sensitivity compared with those using commercial eeAChE. Differential pulse polarography and chronoamperometry were used as electrochemical techniques to characterize the AChE biosensors. The lower detection limit of 1 ppb was obtained with D375G,Y370F,Y374A,F376L mutant of dmAChE, compared to 90 ppb for the commercial eeAChE. This study may stimulate scientists to develop more sensitive and selective procedures for organophosphorus insecticides detection by using engineered variant of dmAChE.  相似文献   

2.
An array-based optical biosensor for the simultaneous analysis of multiple samples in the presence of unrelated multi-analytes was fabricated. Urease and acetylcholinesterase (AChE) were used as model enzymes and were co-entrapped with the sensing probe, FITC-dextran, in the sol-gel matrix to measure pH, urea, acetylcholine (ACh) and heavy metals (enzyme inhibitors). Environmental and biological samples spiked with metal ions were also used to evaluate the application of the array biosensor to real samples. The biosensor exhibited high specificity in identifying multiple analytes. No obvious cross-interference was observed when a 50-spot array biosensor was used for simultaneous analysis of multiple samples in the presence of multiple analytes. The sensing system can determine pH over a dynamic range from 4 to 8.5. The limits of detection (LODs) of 2.5-50 microM with a dynamic range of 2-3 orders of magnitude for urea and ACh measurements were obtained. Moreover, the urease-encapsulated array biosensor was used to detect heavy metals. The analytical ranges of Cd(II), Cu(II), and Hg(II) were between 10 nM and 100 mM. When real samples were spiked with heavy metals, the array biosensor also exhibited potential effectiveness in screening enzyme inhibitors.  相似文献   

3.
Organophosphorus compounds (OPs) are widely used as pesticides because of their ability to inhibit the activity of acetylcholinesterase (AChE) in the nervous system. Thus, AChE is generally used as a biosensor for pesticide detection. Due to the instability of AChE a more stable enzyme would be desirable for robust applications. We investigated the sensitivity of a thermostable carboxylesterase from the archaeon Archaeoglobus fulgidus (AFEST) to seven selected OPs. The IC50 of dichlorvos against AFEST (50.8 ± 2.6 nM) was 10-fold lower than that of the commercially obtained AChE, indicating that AFEST had higher sensitivity. Its sensitivity for the other OPs was lower than AChE. To enhance the sensitivity of AFEST to OPs, site-directed mutations were introduced in the cap domain of AFEST. The sensitivity of mutant N44S/S48V was enhanced toward all seven OPs compared to the wild-type and was higher than AChE for four OPs, including paraoxon (3.3 ± 0.01 nM), dichlorvos (28.0 ± 0.6 nM), profenofos (43.0 ± 1.0 nM), and diazinon (3.0 ± 0.2 nM). The half-lives of AFEST and the mutant N44S/S48V at 37 °C were over 15 d. The interactions between the enzymes and select OPs were investigated by molecular docking. The results demonstrated that AFEST and the mutant N44S/S48V have the potential to be biosensor for OP detection.  相似文献   

4.
Enzymes hydrolysing highly toxic organophosphate esters (OPs) are promising alternatives to pharmacological countermeasures against OPs poisoning. Bungarus fasciatus acetylcholinesterase (BfAChE) was engineered to acquire organophosphate hydrolase (OPase) activity by reproducing the features of the human butyrylcholinesterase G117H mutant, the first mutant designed to hydrolyse OPs. The modification consisted of a triple mutation on the (122)GFYS(125) peptide segment, resulting in (122)HFQT(125). This substitution introduced a nucleophilic histidine above the oxyanion hole, and made space in that region. The mutant did not show inhibition by excess acetylthiocholine up to 80 mM. The k(cat)/K(m) ratio with acetylthiocholine was 4 orders of magnitude lower than that of wild-type AChE. Interestingly, due to low affinity, the G122H/Y124Q/S125T mutant was resistant to sub-millimolar concentrations of OPs. Moreover, it had hydrolysing activity with paraoxon, echothiophate, and diisopropyl phosphofluoridate (DFP). DFP was characterised as a slow-binding substrate. This mutant is the first mutant of AChE capable of hydrolysing organophosphates. However, the overall OPase efficiency was greatly decreased compared to G117H butyrylcholinesterase.  相似文献   

5.
Here, we describe the development of a bi-enzymatic biosensor that simplifies the sample pretreatment steps for insecticide detection, and opens the way for a highly sensitive detection of phosphorothionates in food. These compounds evolve their inhibitory activity towards acetylcholinesterases (AChEs) only after oxidation, which is performed in vivo by P450 monooxygenases. Consequently, phosphorothionates require a suitable sample pretreatment by selective oxidation to be detectable in AChE based systems. In this study, enzymatic phosphorothionate activation and AChE inhibition were integrated in a single biosensor unit. A triple mutant of cytochrome P450 BM-3 (CYP 102-A1) and Nippostrongylus brasiliensis AChE (NbAChE) was immobilized using a fluoride catalyzed sol-gel process. Different sol-gel types were fabricated and characterized regarding enzyme loading capacity and enzyme activity containment. The enzyme sol-gel itself already proved to be suitable for the highly sensitive detection of paraoxon and parathion in a spectrometric assay. A method for screen-printing of this enzyme sol-gel on thick film electrodes was developed. Finally, amperometric biosensors containing coimmobilized NbAChE and the cytochrome P450 BM-3 mutant were produced and characterized with respect to signal stability, organophosphate detection, and storage stability. The detection limits achieved were 1 microg/L for paraoxon and 10 microg/L for parathion, which is according to EC regulations the highest tolerable pesticide concentration in infant food.  相似文献   

6.
A novel, low potential and highly sensitive acetylcholinesterase (AChE) biosensor was developed based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotube composite gel thiocholine sensor. Composite gel promoted electron transfer reaction at a lower potential (+50 mV) and catalyzed electrochemical oxidation of thiocholine with high sensitivity. AChE was immobilized in sol-gel matrix that provides a good support for enzyme without any inhibition effect from the ionic liquid. The amount of immobilized enzyme and incubation time with chlorpyrifos were optimized. Chlorpyrifos could be determined in the range of 10(-8)-10(-6)M with a detection limit of 4 nM. Fast and efficient enzyme reactivation was obtained at low obidoxime concentration (0.1mM). Moreover, the biosensor exhibited a good stability and reproducibility and could be use for multiple determinations of pesticide with no loss of the enzyme activity.  相似文献   

7.
A novel, highly sensitive amperometric biosensor for detection of organophosphorus (OP) compounds has been constructed, based on rat brain acetylcholinesterase (AChE) immobilized onto nanocomposite of ZnS-nanoparticles (ZnSNPs) and poly(indole-5-carboxylic acid) electrodeposited on Au electrode. In the presence of acetylthiocholine chloride (ATCl) as a substrate, ZnSNPs promoted electron transfer reactions at a lower potential and catalyzed electrochemical oxidation of enzymatically formed thiocholine, thus increasing detection sensitivity. Under optimum conditions (phosphate buffer, pH 7.5 and 30°C), the inhibition of AChE by malathion and chlorpyrifos was proportional to their concentrations in the range, 0.1-50nM and 1.5-40nM, respectively. The biosensor determined malathion and chlorpyrifos in spiked tap water samples with a acceptable accuracy (95-100%). The enzyme electrode had long-storage stability (50% retention of initial activity within 2 months, when stored at 4°C).  相似文献   

8.
Hysteresis of insect acetylcholinesterase   总被引:1,自引:0,他引:1  
Pre-steady-state catalytic properties of insect acetylcholinesterase (AChE, EC 3.1.1.7) were studied with the neutral substrate N-methylindoxylacetate. Kinetics of soluble Apis mellifera and Drosophila melanogaster AChE forms showed lags (v(i)=0) before reaching the steady-state. Results were interpreted in terms of slow equilibrium between two conformational states E and E' of insect AChE. Hysteresis of insect AChE has been pointed out for the first time. The hysteretic behaviour was found to depend on the NMIA concentration and the nature of the enzyme. The maximum induction times (tau(max)) to reach the steady-state were 800 and 1000s with soluble AChE from A. mellifera and D.melanogaster, respectively. The orders of magnitude of the tau(max) were high and similar to human AChE and BuChE.  相似文献   

9.
Asp222 is an invariant residue in all known sequences of aspartate aminotransferases from a variety of sources and is located within a distance of strong ionic interaction with N(1) of the coenzyme, pyridoxal 5'-phosphate (PLP), or pyridoxamine 5'-phosphate (PMP). This residue of Escherichia coli aspartate aminotransferase was replaced by Ala, Asn, or Glu by site-directed mutagenesis. The PLP form of the mutant enzyme D222E showed pH-dependent spectral changes with a pKa value of 6.44 for the protonation of the internal aldimine bond, slightly lower than that (6.7) for the wild-type enzyme. In contrast, the internal aldimine bond in the D222A or D222N enzyme did not titrate over the pH range 5.3-9.5, and a 430-nm band attributed to the protonated aldimine persisted even at high pH. The binding affinity of the D222A and D222N enzymes for PMP decreased by 3 orders of magnitude as compared to that of the wild-type enzyme. Pre-steady-state half-transamination reactions of all the mutant enzymes with substrates exhibited anomalous progress curves comprising multiphasic exponential processes, which were accounted for by postulating several kinetically different enzyme species for both the PLP and PMP forms of each mutant enzyme. While the replacement of Asp222 by Glu yielded fairly active enzyme species, the replacement by Ala and Asn resulted in 8600- and 20,000-fold decreases, respectively, in the catalytic efficiency (kmax/Kd value for the most active species of each mutant enzyme) in the reactions of the PLP form with aspartate. In contrast, the catalytic efficiency of the PMP form of the D222A or D222N enzyme with 2-oxoglutarate was still retained at a level as high as 2-10% of that of the wild-type enzyme. The presteady-state reactions of these two mutant enzymes with [2-2H]aspartate revealed a deuterium isotope effect (kH/kD = 6.0) greater than that [kH/kD = 2.2; Kuramitsu, S., Hiromi, K., Hayashi, H., Morino, Y., & Kagamiyama, H. (1990) Biochemistry 29, 5469-5476] for the wild-type enzyme. These findings indicate that the presence of a negatively charged residue at position 222 is particularly critical for the withdrawal of the alpha-proton of the amino acid substrate and accelerates this rate-determining step by about 5 kcal.mol-1. Thus it is concluded that Asp222 serves as a protein ligand tethering the coenzyme in a productive mode within the active site and stabilizes the protonated N(1) of the coenzyme to strengthen the electron-withdrawing capacity of the coenzyme.  相似文献   

10.
Epoxide hydrolase from Agrobacterium radiobacter catalyzes the hydrolysis of epoxides to their diols via an alkyl-enzyme intermediate. The recently solved X-ray structure of the enzyme shows that two tyrosine residues (Tyr152 and Tyr215) are positioned close to the nucleophile Asp107 in such a way that they can serve as proton donor in the alkylation reaction step. The role of these tyrosines, which are conserved in other epoxide hydrolases, was studied by site-directed mutagenesis. Mutation of Tyr215 to Phe and Ala and mutation of Tyr152 to Phe resulted in mutant enzymes of which the k(cat) values were only 2-4-fold lower than for wild-type enzyme, whereas the K(m) values for the (R)-enantiomers of styrene oxide and p-nitrostyrene oxide were 3 orders of magnitude higher than the K(m) values of wild-type enzyme, showing that the alkylation half-reaction is severely affected by the mutations. Pre-steady-state analysis of the conversion of (R)-styrene oxide by the Y215F and Y215A mutants showed that the 1000-fold elevated K(m) values were mainly caused by a 15-40-fold increase in K(S) and a 20-fold reduction in the rate of alkylation. The rates of hydrolysis of the alkyl-enzyme intermediates were not significantly affected by the mutations. The double mutant Y152F+Y215F showed only a low residual activity for (R)-styrene oxide, with a k(cat)/K(m) value that was 6 orders of magnitude lower than with wild-type enzyme and 3 orders of magnitude lower than with the single tyrosine mutants. This indicates that the effects of the mutations were cumulative. The side chain of Gln134 is positioned in the active site of the X-ray structure of epoxide hydrolase. Mutation of Gln134 to Ala resulted in an active enzyme with slightly altered steady-state kinetic parameters compared to wild-type enzyme, indicating that Gln134 is not essential for catalysis and that the side chain of Gln134 mimics bound substrate. Based upon this observation, the inhibitory potential of various unsubstituted amides was tested, resulting in the identification of phenylacetamide as a competitive inhibitor with an inhibition constant of 30 microM.  相似文献   

11.
In this study, an acetylcholinesterase (AChE) biosensor with superior accuracy and sensitivity was successfully developed based on interdigitated array microelectrodes (IAMs). IAMs have a series of parallel microband electrodes with alternating microbands connected together. Chitosan was used as the enzyme immobilization material, and AChE was used as the model enzyme for carbaryl detection to fabricate AChE biosensor. Electrochemical impedance spectroscopy was used in conjunction with the fabricated biosensor to detect pesticide residues. Based on the inhibition of pesticides on the AChE activity, using carbaryl as model compounds, the biosensor exhibited a wide range, low detection limit, and high stability. Moreover, the biosensor can also be used as a new promising tool for pesticide residue analysis.  相似文献   

12.
Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5'-monophosphate to uridine 5'-monophosphate during pyrimidine nucleotide biosynthesis. This enzyme is one of the most proficient known, exhibiting a rate enhancement of over 17 orders of magnitude over the uncatalyzed rate. An interesting question is whether the high proficiency of ODCase is associated with a highly optimized sequence of active site residues. This question was addressed by randomizing 24 residue positions in and around the active site of the E. coli ODCase (pyrF) by site-directed mutagenesis. The libraries of mutants were selected for function from a multicopy plasmid or by single-copy replacement at the pyrF locus on the E. coli chromosome. Stringent sequence requirements for function were found for the mutants expressed from the chromosomal pyrF locus. Six positions were not tolerant of substitutions and several others accepted very limited substitutions. In contrast, all positions could be substituted to some extent when the library mutants were expressed from a multicopy plasmid. For the conserved quartet of charged residues Lys44-Asp71-Lys73-Asp76, a cysteine substitution was found to provide function at positions 71 and 76. A lower pK(a) for both cysteine mutants supports a mechanism whereby the thiolate group of cysteine substitutes for the negatively charged aspartate side chain. The partial function mutants such as D71C and D76C exhibit reduced catalytic efficiency relative to wild type but nevertheless provide a rate enhancement of 15 orders of magnitude over the uncatalyzed rate indicating the catalytic proficiency of the enzyme is robust and tolerant of mutation.  相似文献   

13.
We have demonstrated that amino acids E (323), Y (324), E (330), and V (331) from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D (334) and Y (335) as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D (334) --> K and Y (335) --> F (factor V (KF)) and D (334) --> A and Y (335) --> A (factor V (AA)). Kinetic studies showed that while factor Va (KF) and factor Va (AA) had a K D for factor Xa similar to the K D observed for wild-type factor Va (factor Va (WT)), the clotting activities of the mutant molecules were impaired and the k cat of prothrombinase assembled with factor Va (KF) and factor Va (AA) was reduced. The second-order rate constant of prothrombinase assembled with factor Va (KF) or factor Va (AA) for prothrombin activation was approximately 10-fold lower than the second-order rate constant for the same reaction catalyzed by prothrombinase assembled with factor Va (WT). We also created quadruple mutants combining mutations in the amino acid region 334-335 with mutations at the previously identified amino acids that are important for factor Xa binding (i.e., E (323)Y (324) and E (330)V (331)). Prothrombinase assembled with the quadruple mutant molecules displayed a second-order rate constant up to 400-fold lower than the values obtained with prothrombinase assembled with factor Va (WT). The data demonstrate that amino acid region 334-335 is required for the rearrangement of enzyme and substrate necessary for efficient catalysis of prothrombin by prothrombinase.  相似文献   

14.
The calcitonin-like receptor (CLR) associated with receptor-activity-modifying proteins (RAMP) 1 or -2 recognizes calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), respectively. The amino acid sequence CNRTWDGWLCW corresponding to residues 64-74 in the extracellular N-terminus of the CLR is conserved. The Asp(69) (D(69)) is present in all family B1 G-protein-coupled receptors. Here the D(69) of a V5-tagged mouse CLR has been mutated to Ala (A), Glu (E), and Asn (N). The function of the intact and the mutant CLR was investigated in COS-7 cells coexpressing myc-tagged mouse RAMP1 or -2. In CLR/RAMP1 and -2 expressing cells CGRP and AM stimulated cAMP formation with an EC(50) of 0.17 and 0.50 nM, respectively. The expression of the D69A, D69E, and D69N mutants at the cell surface was comparable to that of the intact CLR. cAMP stimulation by CGRP and AM was abolished in the D69A mutant. With the D69E mutant the EC(50) of CGRP and AM were 1000-fold higher than those with the intact CLR. With the D69N mutant the EC(50) of CGRP was 0.48 nM and that of AM 0.44 nM, but the maximal cAMP formation was reduced to 24% and to 12% of cells with the intact CLR. Co-immunoprecipitation of RAMP1 with the CLR, indicating complex formation, was reduced with the D69A, D69N, and D69E mutants. RAMP2 co-precipitated with the mutant receptors indistinguishable from the intact CLR. In conclusion, mutation of D69 to N, E or A in the CLR did not affect its expression at the cell surface, but impaired or abolished the CGRP and AM receptor function in the presence of RAMP1 and -2, respectively.  相似文献   

15.
16.
In order to investigate the residues associated with binding of the substrate taurocyamine in Arenicola mitochondrial taurocyamine kinase (TK), we performed Ala-scanning of the amino acid sequence HTKTV at positions 67-71 on the GS loop, and determined apparent K(m) and V(max) (appK(m) and appV(max), respectively) of the mutant forms for the substrates taurocyamine and glycocyamine. The appK(m) values for taurocyamine of the K69A, T70A and V71A mutants were significantly increased as compared with wild-type, suggesting that these residues are associated with taurocyamine binding. Of special interest is a property of V71A mutant: its catalytic efficiency for glycocyamine was twice that for taurocyamine, indicating that the V71A mutant acts like a glycocyamine kinase, rather than a TK. The role of the amino acid residue K95 of Arenicola MiTK was also examined. K95 was replaced with R, H, Y, I, A and E. K95R, K95H and K95I have a 3-fold higher affinity for taurocyamine, and activity was largely lost in K95E. On the other hand, the K95Y mutant showed a rather unique feature; namely, an increase in substrate concentration caused a decrease in initial velocity of the reaction (substrate inhibition). This is the first report on the key amino acid residues responsible for taurocyamine binding in mitochondrial TK.  相似文献   

17.
We used site-directed mutagenesis to investigate the role of Glu(69), Asp(70), Asp(71), Asp(72), Tyr-sulfate(73), and Asp(75) in the second acidic region (AR2) of the serpin heparin cofactor II (HCII) during formation of the thrombin.HCII complex with and without glycosaminoglycans. E69Q/D70N/D71N recombinant (r)HCII, D72N/Y73F/D75N rHCII, and E69Q/D70N/D71N/D72N/Y73F/D75N rHCII were prepared to localize acidic residues important for thrombin inhibition. Interestingly, D72N/Y73F/D75N rHCII had significantly enhanced thrombin inhibition without glycosaminoglycan (4-fold greater) and with heparin (6-fold greater), showing maximal activity at 2 microg/ml heparin compared with wild-type recombinant HCII (wt-rHCII) with maximal activity at 20 microg/ml heparin. The other rHCII mutants had lesser-enhanced activities, but they all eluted from heparin-Sepharose at significantly higher ionic strengths compared with wt-rHCII. Neutralizing and reversing the charge of Asp(72), Tyr-sulfate(73), and Asp(75) were done to characterize their individual contribution to HCII activity. Only Y73K rHCII and D75K rHCII have significantly increased heparin cofactor activity compared with wt-rHCII; however, all of the individual rHCII mutants required substantially less glycosaminoglycan at maximal inhibition than did wt-rHCII. Inhibition of either alpha-thrombin/hirugen or gamma(T)-thrombin (both with an altered anion-binding exosite-1) by the AR2 rHCII mutants was similar to wt-rHCII. D72N/Y73F/D75N rHCII and D75K rHCII were significantly more active than wt-rHCII in a plasma-based thrombin inhibition assay with glycosaminoglycans. These results indicate that improved thrombin inhibition in the AR2 HCII mutants is mediated by enhanced interactions between the acidic domain and anion-binding exosite-1 of thrombin and that AR2 may be a "molecular rheostat" to promote thrombin inhibition in the presence of glycosaminoglycans.  相似文献   

18.
DNA screening for LDL receptor mutations was performed in 170 unrelated hyperlipidemic Chinese patients and two clinically diagnosed familial hypercholesterolemia patients. Two deletions (Del e3-5 and Del e6-8), eight point mutations (W-18X, D69N, R94H, E207K, C308Y, I402T, A410T, and A696G), and two polymorphisms (A370T and I602V) were identified. Of these mutations, C308Y and Del e6-8 were found in homozygosity, and D69N and C308Y were seen in unrelated patients. The effects of mutations on LDL receptor function were characterized in COS-7 cells. The LDL receptor level and activity were close to those of wild type in A696G transfected cells. A novel intermediate protein and reduction of LDL receptor activity were seen in D69N transfected cells. For R94H, E207K, C308Y, I402T, and A410T mutations, only approximately 20-64% of normal receptor activities were seen. Conversely, Del e3-5 and Del e6-8 lead to defective proteins with approximately 0-13% activity. Most of the mutant receptors were localized intracellularly, with a staining pattern resembling that of the endoplasmic reticulum and Golgi apparatus (D69N, R94H, E207K, C308Y, and I402T) or endosome/lysosome (A410T and Del e6-8). Molecular analysis of the LDL receptor gene will clearly identify the cause of the patient's hyperlipidemia and allow appropriate early treatment as well as antenatal and family studies.  相似文献   

19.
The citric acid cycle enzyme, malate dehydrogenase (MDH), is a dimer of identical subunits. In the crystal structures of 2 prokaryotic and 2 eukaryotic forms, the subunit interface is conformationally homologous. To determine whether or not the quaternary structure of MDH is linked to the catalytic activity, mutant forms of the enzyme from Escherichia coli have been constructed. Utilizing the high-resolution structure of E. coli MDH, the dimer interface was analyzed critically for side chains that were spatially constricted and needed for electrostatic interactions. Two such residues were found, D45 and S226. At their nearest point in the homodimer, they are in different subunits, hydrogen bond across the interface, and do not interact with any catalytic residues. Each residue was mutated to a tyrosine, which should disrupt the interface because of its large size. All mutants were cloned and purified to homogeneity from an mdh- E. coli strain (BHB111). Gel filtration of the mutants show that D45Y and D45Y/S226Y are both monomers, whereas the S226Y mutant remains a dimer. The monomeric D45Y and D45Y/S226Y mutants have 14,000- and 17,500-fold less specific activity, respectively, than the native enzyme. The dimeric S226Y has only 1.4-fold less specific activity. All forms crystallized, indicating they were not random coils. Data have been collected to 2.8 A resolution for the D45Y mutant. The mutant is not isomorphous with the native protein and work is underway to solve the structure by molecular replacement.  相似文献   

20.
Amino acids located within and around the 'active site gorge' of human acetylcholinesterase (AChE) were substituted. Replacement of W86 yielded inactive enzyme molecules, consistent with its proposed involvement in binding of the choline moiety in the active center. A decrease in affinity to propidium and a concomitant loss of substrate inhibition was observed in D74G, D74N, D74K and W286A mutants, supporting the idea that the site for substrate inhibition and the peripheral anionic site overlap. Mutations of amino acids neighboring the active center (E202, Y337 and F338) resulted in a decrease in the catalytic and the apparent bimolecular rate constants. A decrease in affinity to edrophonium was observed in D74, E202, Y337 and to a lesser extent in F338 and Y341 mutants. E202, Y337 and Y341 mutants were not inhibited efficiently by high substrate concentrations. We propose that binding of acetylcholine, on the surface of AChE, may trigger sequence of conformational changes extending from the peripheral anionic site through W286 to D74, at the entrance of the 'gorge', and down to the catalytic center (through Y341 to F338 and Y337). These changes, especially in Y337, could block the entrance/exit of the catalytic center and reduce the catalytic efficiency of AChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号