首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melaleuca alternifolia (tea tree) essential oil was investigated for its “in vitro” ability to control Trichoderma harzianum, a fungal contaminant that causes extensive losses in the cultivation of Pleurotus species. The antifungal activity of M. alternifolia essential oil and antagonist activities between Pleurotus species against three T. harzianum strains were studied in dual-culture experiments on an agar-based medium in which different concentrations of essential oil were incorporated. M. alternifolia essential oil at a concentration of 0.625 μL/mL, inhibited T. harzianum mycelial growth by 5.9–9.0%, depending on the strain. At the same concentrations P. ferulae and P. nebrodensis stimulated mycelial growth by 5.2–8.1%. All strains of T. harzianum were antagonistic to the Pleurotus species in the control. When essential oil was added to the substrate cultural, the antagonistic activity of T. harzianum against the Pleurotus species was weak (0.0625 μL of essential oil) or non-existent (0.125 μL of essential oil). M. alternifolia essential oil could be an alternative to the synthetic chemicals that are currently used to prevent and control T. harzianum in mushroom cultivation.  相似文献   

2.
Eighteen mycoparasitic Trichoderma strains were tested for their ability to degrade heat-inactivated Bacillus cereus var. mycoides, B. megaterium, B. subtilis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Serratia marcescens cells. The non-inductive and inductive ferment broths of five strains with good degrading abilities towards B. subtilis were investigated for specific degrading enzyme activities. In addition to trypsin- and chymotrypsin-like protease activities, -1,4-N-acetyl-glucosaminidase (NAGase) was also secreted. Strain Trichoderma harzianum T19 had the most outstanding degrading abilities. The extracellular degrading enzymes of this strain were separated on a Sephadex G-150 column, and their preliminary characterization was performed. The results demonstrated that muramidase-like activities are present in the ferment broth of this T. harzianum strain.  相似文献   

3.
We have developed a polymerase chain reaction (PCR)-based detection method for Trichoderma harzianum, which causes green mold disease in mushroom cultivation fields and facilities. Based on the sequence data of the internal transcribed spacer (ITS) region of T. harzianum strains and several other species, six primers consisting of three forward and three reverse primers were designed. Among the nine possible combinations of these primers, PCR with the pair THITS-F2 and THITS-R3 distinguished most T. harzianum strains from other Trichoderma species. The optimal annealing temperature for detection of T. harzianum strains was from 62° to 63°C with this primer combination. We designed new primers derived from THITS-F2 and THITS-R3. Annealing temperatures to detect T. harzianum ranged from 64° to 67°C using the new primers. The detection limit of T. harzianum DNA was 50 fg by nested PCR with THITS-F1 and LR1-1 for the first PCR and the new primers for the second PCR. T. harzianum was readily detectable in contaminated cultures of Lentinula edodes by this method.  相似文献   

4.

Background  

The mitosporic fungus Trichoderma harzianum (Hypocrea, Ascomycota, Hypocreales, Hypocreaceae) is an ubiquitous species in the environment with some strains commercially exploited for the biological control of plant pathogenic fungi. Although T. harzianum is asexual (or anamorphic), its sexual stage (or teleomorph) has been described as Hypocrea lixii. Since recombination would be an important issue for the efficacy of an agent of the biological control in the field, we investigated the phylogenetic structure of the species.  相似文献   

5.
Strains of selected bacteria and Trichoderma harzianum isolated from sugarcane rhizosphere and endosphere regions were tested for the production of chitinolytic enzymes and their involvement in the suppression of Colletotrichum falcatum, red rot pathogen of sugarcane. Among several strains tested for chitinolytic activity, 12 strains showed a clearing zone on chitin-amended agar medium. Among these, bacterial strains AFG2, AFG 4, AFG 10, FP7 and VPT4 and all the tested T. harzianum strains produced clearing zones of a size larger than 10 mm. The antifungal activity of these strains increased when chitin was incorporated into the medium. Trichoderma harzianum strain T5 showed increased levels of activity of N-acetylglucosaminidase and -1,3-glucanase when grown on minimal medium containing chitin or cell wall of the pathogen. Lytic enzymes of bacterial strains AFG2, AFG4, VPT4 and FP7 and T. harzianum T5 inhibited conidial germination and mycelial growth of the pathogen. Enzymes from T. harzianum T5 were found to be the most effective in inhibiting the fungus. When mycelial discs of the pathogen were treated with the enzymes, electrolytes were released from fungal mycelia. The results indicated that antagonistic T. harzianum T5 caused a higher level of lysis of the pathogen mycelium, and the inhibitory effect was more pronounced when the lytic enzymes were produced using chitin or cell wall of the pathogen as carbon source.  相似文献   

6.
Soil samples from both healthy and diseased paprika roots were tested to identify their mycoflora. Thirty-one species belonging to 16 genera were collected from rhizosphere and rhizoplane samples. The most frequently isolated fungi were Aspergillus flavus, A. niger, A. terreus, Fusarium oxysporum, Penicillium jensenii and Trichoderma harzianum. Fusarium oxysporum was the most common Fusarium species in the rhizoplane samples of diseased roots and identification was confirmed by RAPD-PCR technique. Trichoderma harzianum, T. pseudokoningii and Glioclaium roseum were chosen to study their biological control efficiency against Fusarium oxysporum. These fungal species reduced the percentage of seedling infection to 25, 40 and 50%, respectively. With the increasing of fungicide (Folicur and Ridomil) doses the dry weight of F. oxysporum decreased. Also, the increasing of fungicide dose lead to a slight decrease in the dry weight of T. harzianum, T. pseudokoningii and Glioclaium roseum.  相似文献   

7.
Six bacterial strains (Bacillus subtilis, Bacillus polymyxa, Bacillus circulans, Pseudomonas putida, Pseudomonas fluorescens 2 and Pseudomonas fluorescens 8) and one fungal isolate (Trichoderma harzianum) were tested for their ability to protect Cucumis sativus L. cv. Beith Alpha against the disease development of Cucumber mosaic cucumovirus (CMV). Seed treatment with individual bacterial and fungal liquid cultures significantly and consistently reduced the disease severity (DS) of infected cucumber plants, after 14 days from CMV inoculation onto cotyledons. All seven biotic inducers reduced the CMV infection at the range of 16.6–39% and 0–46.5% under sterilised and non-sterilised soils, respectively. The effect of treatment with each biotic inducer has a significant difference in the percentage of CMV DS. In sterilised soil, B. circulans has a low percentage of DS (42%), while P. fluorescens 8 has a high DS percentage (62.9%). In non-sterilised soil, the low DS percentage was 30% for T. harzianum, while P. putida had the highest DS percentage (70%). On the other hand, CMV variability on Chenopodium amaranticolor revealed that all biotic treatments differed according to the local lesion number, similarity and morphology.  相似文献   

8.
The antagonist strains Gliocladium virens G2 and Trichoderma harzianum T3 originally isolated from Pythium suppressive peat, and two benomyl-resistant strains of T. harzianum, T12B and T95, were evaluated as biological control agents of damping-off and root rot of cucumbers in sphagnum peat caused by Pythium ultimum. All strains were equally effective when applied as 1 % peat-bran preparations, whereas the effectiveness of disease control was reduced at higher concentrations of the antagonists. The two wild-type strains were also found to be effective when applied as conidial suspensions, and in this case no reduction in disease control was seen at higher concentrations. G. virens G2 and T. harzianum T12B showed antibiotic activity against P. ultimum in in vitro tests; however there were no signs of mycoparasitism of P. ultimum by any of the antagonist strains.  相似文献   

9.
Twenty Trichoderma isolates were collected on 13 Serbian Agaricus bisporus farms and one in Bosnia and Herzegovina during 2006–2010. Twelve isolates were classified into five species by standard mycological studies and ITS1/ITS4 sequence analyses, namely Trichoderma atroviride, Trichoderma koningii, Trichoderma virens, Trichoderma aggressivum f. europaeum and Trichoderma harzianum. Eight isolates were not identified to the species level but were shown to be related to T. harzianum. The isolates of T. harzianum exhibited the highest virulence to the harvested A. bisporus pilei and T. virens and T. aggressivum f. europaeum the lowest. Antifungal activity of two biofungicides based on Bacillus subtilis and tea tree oil and the fungicide prochloraz manganese were tested in vitro to all Trichoderma isolates. Prochloraz manganese and B. subtilis were highly toxic to all tested Trichoderma isolates, their ED50 values were below 0.3 and 1.3 mg L?1, respectively. Tea tree oil did not exhibit a significant antifungal activity (ED50 = 11.9–370.8 mg L?1). The effectiveness of biofungicides was evaluated against T. harzianum in a mushroom growing room, and they were applied alone or in combination with the fungicide at a respective proportion of 20:80%. Prochloraz manganese showed higher effectiveness than both tested biofungicides or their respective mixtures. The biofungicide based on B. subtilis demonstrated greater effectiveness in preventing disease symptoms than tea tree oil. B. subtilis combined with the fungicide revealed less antagonism in effectiveness against pathogen than tea tree oil.  相似文献   

10.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

11.
The most common biological control agents (BCAs) of the genus Trichoderma have been reported to be strains of Trichoderma virens, T. harzianum, and T. viride. Since Trichoderma BCAs use different mechanisms of biocontrol, it is very important to explore the synergistic effects expressed by different genotypes for their practical use in agriculture. Characterization of 16 biocontrol strains, previously identified as “Trichoderma harzianum” Rifai and one biocontrol strain recognized as T. viride, was carried out using several molecular techniques. A certain degree of polymorphism was detected in hybridizations using a probe of mitochondrial DNA. Sequencing of internal transcribed spacers 1 and 2 (ITS1 and ITS2) revealed three different ITS lengths and four different sequence types. Phylogenetic analysis based on ITS1 sequences, including type strains of different species, clustered the 17 biocontrol strains into four groups: T. harzianum-T. inhamatum complex, T. longibrachiatum, T. asperellum, and T. atroviride-T. koningii complex. ITS2 sequences were also useful for locating the biocontrol strains in T. atroviride within the complex T. atroviride-T. koningii. None of the biocontrol strains studied corresponded to biotypes Th2 or Th4 of T. harzianum, which cause mushroom green mold. Correlation between different genotypes and potential biocontrol activity was studied under dual culturing of 17 BCAs in the presence of the phytopathogenic fungi Phoma betae, Rosellinia necatrix, Botrytis cinerea, and Fusarium oxysporum f. sp. dianthi in three different media.  相似文献   

12.
The production of enzymes involved in mycoparasitism by several strains of ectomycorrhizal fungi: Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), S. bovinus (15-3), S. luteus (14-7) on different substrates such as colloidal chitin, mycelia of Trichoderma harzianum, T. virens and Mucor hiemalis was examined. Chitinases and β-1,3-glucanases were assayed spectrophotometrically by measuring the amount of reducing sugars releasing from suitable substrate by means of Miller’s method. β-glucosidases were determined by measuring the amount of p-nitrophenol released from p-nitrophenyl-β-D-glucopyranoside. It was observed that A. muscaria (16-3) and L. laccata (9-12) biosynthesized the highest activity of enzymes in contrast to the strains of S. bovinus and S. luteus. The mycelium of T. harzianum turned out to be the best substrate for the induction of β-1,3-glucanases and β-glucosidases for both strains of L. laccata, although the difference in the induction of chitinases in the presence of mycelia of different species of Trichoderma was not indicated.  相似文献   

13.
Two species of bioluminescent fungi, Panellus stypticus and Omphalotus olearius were placed in contact with three different strains of interfungal pathogenic Trichoderma harzianum. Subsequent light emission by the luminous fungi and advance of the interfungal pathogens were compared. Relative differences among the pathogens were reflected in their rate of mycelial advance, the total area over which they produced spores upon the host fungi, and decreases in host bioluminescence. After ten days differences in the total surface areas of spore production varied from 1 to 53 per cent. Differences in the reduction of bioluminescence of the same material ranged over 2 orders of magnitude. Final reduction in luminescence ranged over 6 orders of magnitude. A marked reduction in bioluminescence was observed to precede the advance of spore production. The greatest reduction in luminescence was correlated with the presence of T. harzianum hyphae. Two strains of T. harzianum, NRRL 1698 and ATCC 58674, were effective against both bioluminescent fungi within the study period while a third strain, NRRL 13019, was only effective against Omphalotus olearius.  相似文献   

14.
Trichoderma strains were extensively studied as biocontrol agents due to their ability of producing hydrolytic enzymes, which are considered key enzymes because they attack the insect exoskeleton allowing the fungi infection. The present work aimed to evaluate the ability of chitosanase production by four Trichoderma strains (T. harzianum, T. koningii, T. viride and T. polysporum) under solid stated fermentation and to evaluate the effect of pH and temperature on enzyme activity. pH strongly affected the enzyme activity from all tested strains. Chitosanase from T. harzianum and T. viride presented optimum activity at pH 5.0 and chitosanase from T. koningii and T. polysporum presented optimum activity at pH 5.5. Temperature in the range of 40–50°C did not affect enzyme activity. T. polysporum was found as the most promising strain to produce chitosanase with maximal enzyme activity of about 1.4 IU/gds, followed by T. viride (~1.2 IU/gds) and T. harzianum (1.06 IU/gds).  相似文献   

15.
Trichoderma harzianum, isolate T 01-22, was cultured on either sorghum grains, ground mesocarp fibre of oil-palm or oil-palm shell, both amended with urea fertilizer (100:1, w/w). T. harzianum cultured on ground mesocarp fibre was then used to coat seeds of Chinese kale (Brassica alboglabra Bailey) to control damping-off of seedlings caused by Pythium aphanidermatum. Biomass of T. harzianum cultured on ground mesocarp fibre of oil-palm was more effective than Captan and Benomyl, but less effective than Metalaxyl, in controlling damping-off of Chinese kale seedlings. Viability of T. harzianum growing on sorghum grains was reduced significantly during 7 months storage, followed by that of T. harzianum cultured on ground mesocarp fibre and oil-palm shell, both amended with urea fertilizer (46-0-0) at 100:1 (w/w).  相似文献   

16.
We describe a polymerase chain reaction (PCR)-based test that is specific for the pathogenic European biotype 2 (Th2) and North American biotype 4 (Th4) of Trichoderma harzianum, responsible for the green mold epidemic in the cultivated mushroom, Agaricus bisporus. A PCR primer pair was designed that targets a 444-bp arbitrary sequence in the genome of Th4. The primers also amplified the same product with Th2, but showed no reactivity with other biotypes of T. harzianum, several biocontrol Trichoderma, or with 31 other genera and species of fungi. The PCR-based test should have application in disease management programs, and in the evaluation of biocontrol Trichoderma for potential pathogenicity on mushrooms. Received: 23 November 1998 / Received revision: 19 February 1999 / Accepted: 5 March 1999  相似文献   

17.
The species Trichoderma harzianum was analyzed as possible biocontrol agent of Alternaria alternata under different environmental conditions (water activity and temperature). The strains were analyzed macroscopically to obtain the Index of Dominance. The analysis was completed using two microscopic techniques. T. harzianum showed dominance on contact over A. alternata at all testing temperatures and water activities tested except at 0.95 a w and 15 °C, at which T. harzianum inhibited A. alternata at a distance. Biocontrol was governed by different mechanisms such as competition for space and nutrients, mycoparasitism, and possible antibiosis. Temperature and water activity significantly influenced fungal growth rate.  相似文献   

18.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

19.
Summary Trichoderma harzianum preparations was used in two successive field experiments in commercial strawberry nurseries and fruiting fields. Disease severity ofRhizoctonia solani in daughter plants was reduced by 18–46 % in the treated nursery plots. Infestation of nursery soil with the pathogen, as tested by planting beans in soil samples was reduced by the Trichoderma treatment by up to 92% as compared to the untreated control. A rapid decline of the disease was observed in soil fromT. harzianum treated plots, successively planted with bean seedlings. More isolates ofTrichoderma sp. antagonistic toR. solani, were found in the infested field as compared to the non infested one.Trichoderma harzianum treated plants, transferred to the commercial field gave a 21–37% increase in early yield of strawberries. A combined treatment in the nursery and in the fruiting field resulted in a 20% yield increase as compared to control plots.  相似文献   

20.
Trichoderma species are collected from different location of sugarbeet growing areas of Tamil Nadu and it is effective against Sclerotium rolfsii pathogen caused by sugarbeet ecosystems. Out of thirty-one isolates of Trichoderma viride and four isolates of Trichoderma harzianum collected and tested for their antagonistic activity against S. rolfsii by dual culture technique, one isolate was found to be effective T. viride (TVB1) that recorded the maximum (73.03%) inhibition on the mycelial growth recording only 2.40 cm growth as against 8.90 cm in the control. The isolates of T. harzianum THB-1 recorded 71.19% mycelial growth reduction over control. The colonisation behaviour of T. viride (TVB1) revealed that it completely over grew on pathogen within 48 h after interaction with the pathogen, and speed of growth on pathogen was also high and it possesses a higher level of competitive saprophytic ability. The best four isolates of TVB1, TVB-2, TVB-3 and TVB31 and two isolates of T. harzianum THB-1 and THB-2 were compared with other species of Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma koningii and Chaetomium globosum and tested under in vitro condition. BA of neem cake at 150 kg ha?1 + T. viride isolate (TVB1) at 2.5 kg/ha recorded least root rot disease incidence of 17.05% which accounted for 75.37% disease reduction over control and highest recorded maximum root yield 65.73 t ha?1 and increasing sugar content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号