首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The bacterium Vibrio cholerae, the etiological agent of cholera, is often found attached to plankton, a property that is thought to contribute to its environmental persistence in aquatic habitats. The V. cholerae O1 El Tor biotype and V. cholerae O139 strains produce a surface pilus termed the mannose-sensitive hemagglutinin (MSHA), whereas V. cholerae O1 classical biotype strains do not. Although V. cholerae O1 classical does not elaborate MSHA, the gene is present and expressed at a level comparable to that of the other strains. Since V. cholerae O1 El Tor and V. cholerae O139 have displaced V. cholerae O1 classical as the major epidemic strains over the last fifteen years, we investigated the potential role of MSHA in mediating adherence to plankton. We found that mutation of mshA in V. cholerae O1 El Tor significantly diminished, but did not eliminate, adherence to exoskeletons of the planktonic crustacean Daphnia pulex. The effect of the mutation was more pronounced for V. cholerae O139, essentially eliminating adherence. Adherence of the V. cholerae O1 classical mshA mutant was unaffected. The results suggest that MSHA is a factor contributing to the ability of V. cholerae to adhere to plankton. The results also showed that both biotypes of V. cholerae O1 utilize factors in addition to MSHA for zooplankton adherence. The expression of MSHA and these additional, yet to be defined, adherence factors differ in a serogroup- and biotype-specific manner.  相似文献   

2.
Acanthamoeba is a genus of free-living amoebae found to be able to host many bacterial species living in the environment. Acanthamoebae and Vibrio cholerae are found in the aquatic environments of cholera endemic areas. Previously it has been shown that V. cholerae O1 and O139 can survive and grow in Acanthamoeba castellanii. The aim of this study was to examine the ability of Acanthamoeba polyphaga to host V. cholerae O1 and O139. The interaction between A. polyphaga and V. cholerae strains was studied by means of viable amoeba cell counts and viable count of the bacteria in the absence and presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Electron microscopy was used to determine the localization of V. cholerae inside A. polyphaga. The results showed that A. polyphaga enhanced growth and survival of V. cholerae, which grew and survived inside the amoeba cells for 2 weeks. The electron microscopy showed that A. polyphaga hosted intracellular V. cholerae localized in the vacuoles of amoeba cell. Neither the presence of V. cholerae together with A. polyphaga nor the intracellular localization of the bacteria inhibited growth and survival of A. polyphaga. The outcome of the interaction between these microorganisms may support strongly the role of A. polyphaga as host for V. cholerae O1 and O139.  相似文献   

3.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

4.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

5.
Vibrio cholerae is a highly infectious bacterium responsible for large outbreaks of cholera among humans at regular intervals. A seasonal distribution of epidemics is known but the role of naturally occurring habitats are virtually unknown. Plankton has been suggested to play a role, because bacteria can attach to such organisms forming a biofilm. Acanthamoebea castellanii is an environmental amoeba that has been shown to be able to ingest and promote growth of several bacteria of different origin. The aim of the present study was to determine whether or not an intra-amoebic behaviour of V. cholerae O139 exists. Interaction between these microorganisms in co-culture was studied by culturable counts, gentamicin assay, electron microscopy, and polymerase chain reaction. The interaction resulted in intra-amoebic growth and survival of V. cholerae in the cytoplasm of trophozoites as well as in the cysts of A. castellanii. These data show symbiosis between these microorganisms, a facultative intracellular behaviour of V. cholerae contradicting the generally held view, and a role of free-living amoebae as hosts for V. cholerae O139. Taken together, this opens new doors to study the ecology, immunity, epidemiology, and treatment of cholera.  相似文献   

6.
Biotype-specific tcpA genes in Vibrio cholerae   总被引:4,自引:0,他引:4  
Abstract The tcpA gene, encoding the structural subunit of the toxin-coregulated pilus, has been isolated from a variety of clinical isolates of Vibrio cholerae , and the nucleotide sequence determined. Strict biotype-specific conservation within both the coding and putative regulatory regions was observed, with important differences between the El Tor and classical biotypes. V. cholerae O139 Bengal strains appear to have El Tor-type tcpA genes. Environmental O1 and non-O1 isolates have sequences that bind an E1 Tor-specific tcpA DNA probe and that are weakly and variably amplified by tcpA -specific polymerase chain reaction primers, under conditions of reduced stringency. The data presented allow the selection of primer pairs to help distinguish between clinical and environmental isolates, and to distinguish El Tor (and Bengal) biotypes from classical biotypes from classical biotypes of V. cholerae . While the role of TcpA in cholera vaccine preparations remains unclear, the data strongly suggest that TcpA-containing vaccines directed at O1 strains need include only the two forms of TcpA, and that such vaccines directed at (O139) Bengal strains should include the TcpA of El Tor biotype.  相似文献   

7.
Zymovars analysis also known as multilocus enzyme electrophoresis is applied here to investigate the genetic variation of Vibrio cholerae strains and characterise strains or group of strains of medical and epidemiological interest. Fourteen loci were analyzed in 171 strains of non-O1 non-O139, 32 classical and 61 El Tor from America, Africa, Europe and Asia. The mean genetic diversity was 0.339. It is shown that the same O antigen (both O1 and non-O1) may be present in several genetically diverse (different zymovars) strains. Conversely the same zymovar may contain more than one serogroup. It is confirmed that the South American epidemic strain differs from the 7th pandemic El Tor strain in locus LAP (leucyl leucyl aminopeptidase). Here it is shown that this rare allele is present in 1 V. mimicus and 4 non-O1 V. cholerae. Non toxigenic O1 strains from South India epidemic share zymovar 14A with the epidemic El Tor from the 7th pandemic, while another group have diverse zymovars. The sucrose negative epidemic strains isolated in French Guiana and Brazil have the same zymovar of the current American epidemic V. cholerae.  相似文献   

8.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

9.
Sequencing of the cef (CHO cell elongating factor) of Vibrio cholerae serogroup O139 revealed one nucleotide substitution (C for T in position 2015) in comparison with classical V. cholerae O1 and two substitutions (AC for GT in positions 2014-2015) in comparison with V. cholerae O1 E1 Tor. A comparative bioinformatic analysis showed that the substitution determines a threonine residue in position 672 of the Cefprotein, while the position is occupied by an isoleucine residue in the classical strains and a valine residue in the El Tor group. The last two amino acids are hydrophobic, while threonine is hydrophilic, having a polar R group. The non- synonymous substitution affects the predicted secondary and, probably, tertiary structures of the Cef-O139 protein and explained our previous finding that the protein fails to degrade tributyrin, while retaining the tweenase activity spectrum and all other characteristics. It cannot be excluded that the inability of Cef-O139 to cleave triglycerides, along with other genetic specifics, contribute to the fact that the O139 serogroup has been displaced from a dominating position in etiology of cholera by the El Tor genotype. The nucleotide sequence of the V. cholerae O139 cefgene and the deduced amino acid sequence of its product are reported for the first time and were deposited in GenBank under accession nos. JF499787 and AEC04822.1, respectively.  相似文献   

10.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

11.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

12.
Strains of hemolytic Vibrio cholerae O1 (El Tor vibrio) which are sensitive to Mukerjee's cholera phage group IV were isolated from cholera patients in North-East Thailand in 1986. Plaques of the phage on these hemolytic V. cholerae O1 were usually translucent but almost transparent on some strains, just like the plaques on non-hemolytic V. cholerae O1 (classical vibrio). These hemolytic V. cholerae O1 were lysogenized with the infection of cholera phage IV, and the lysogenized strains produced phage different from cholera phage IV. These hemolytic strains were classified into Cured type in prophage typing of V. cholerae O1, El Tor, because they were also lysogenized with Kappa phage and were hemolytic. When Cured-type V. cholerae O1, El Tor previously isolated in various countries were examined for the sensitivity to cholera phage IV, some of the isolates were sensitive.  相似文献   

13.
14.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

15.
The utility of inter simple sequence repeat-PCR (ISSR-PCR) assay in the characterization and elucidation of the phylogenetic relationship between the pathogenic and nonpathogenic isolates of Vibrio cholerae is demonstrated. A total of 45 V. cholerae strains including 15 O1 El Tor, nine O139 and 21 non-O1/non-O139 strains were analyzed using eight ISSR primers. These primers, which are essentially simple sequence repeats (SSR) with additional nonrepeat bases at the 5' or 3' end, amplify genomic regions interspersed between closely spaced SSRs. Neighbor-joining analysis showed that the strains belonging to the same serogroup clustered together with the exception of one O1 and two O139 strains. The absence of pathogenicity islands in these strains, as confirmed by PCR, suggested their non-O1/non-O139 origin. Thus the ISSR-PCR-based phylogeny was consistent with the classification of V. cholerae based on serological methods. A finer resolution of the clustering of the toxinogenic O1 El Tor and toxinogenic O139 subtypes was obtained by ISSR-PCR analysis as compared with the Enterobacterial Repetitive Intergenic Consensus sequences-based PCR analysis for the same set of strains. Thus, it is proposed that ISSR-PCR is an efficient tool in phylogenetic classification of prokaryotic genomes in general and diagnostic genotyping of microbial pathogens in particular.  相似文献   

16.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   

17.
A selected antibody enzyme immunoassay (SAEIA) for the general detection of Vibrio cholerae O1 species has been developed using the immunological reagents of a rabbit antiserum specific for V. cholerae O1 classical Inaba 569B and immobilized cell fragments of V. cholerae O1 El Tor 85P6, and beta-D-galactosidase-labeled goat anti-rabbit immunoglobulin G as tracer. The SAEIA was specific for V. cholerae O1 species and showed low cross-reaction values to other microorganism species tested including Vibrio parahaemolyticus. The detection limit of the SAEIA was 4,500 cells per assay for all the 13 strains of V. cholerae O1 examined. Quantitative comparison on the growth of the El Tor 85P4 in several foods cultured for 24 hr were studied using the SAEIA. Preceding the experiments, little inhibition of every food homogenate for the measurement of the SAEIA was first demonstrated and then the homogenate was directly used for an assay sample. The interaction of the growth of Escherichia coli to that of V. cholerae O1 in a food was also found to be little under the mixed culturing of both bacteria using the SAEIA.  相似文献   

18.
Vibrio cholerae O139 is the first non-O1 serogroup of V. cholerae to give rise to epidemic cholera. Apparently, this new serogroup arose from an El Tor O1 strain of V cholerae, but V. cholerae O139 is distinguishable from V. cholerae El Tor O1 by virtue of its novel antigenic structure and also its characteristic pattern of resistances to the antibiotics sulfamethoxazole, trimethoprim, streptomycin, and furazolidone. We found that the first three of these antibiotic resistances are carried on an approximately 62-kb self-transmissible, chromosomally integrating genetic element which we have termed the SXT element. This novel conjugative transposon-like element could be conjugally transferred from V. cholerae O139 to V cholerae O1 and Escherichia coli strains, where it integrated into the recipient chromosomes in a site-specific manner independent of recA. To study the potential virulence properties of the SXT element as well as to improve upon the live attenuated O139 vaccine strain Bengal-2, a large internal deletion in the SXT element was crossed on to the Bengal-2 chromosome. The resulting strain, Bengal-2.SXT(s), is sensitive to sulfamethoxazole and trimethoprim and colonizes the intestines of suckling mice as well as wild-type strains do, suggesting that the SXT element does not encode a colonization factor. Derivatives of Bengal-2.SXT(s) are predicted to be safe, antibiotic-sensitive, live attenuated vaccines for cholera due to the O139 serogroup.  相似文献   

19.
Variation in epitopes of the B subunit of cholera toxin (CT-B) produced by strains of El Tor and classical biotype Vibrio cholerae O1 was examined using monoclonal antibodies prepared to V. cholerae 569B CT. CT-B epitopes were markedly conserved for V. cholerae classical biotypes. In contrast, epitope variation was observed for El Tor biotypes, which produced both a classical-like CT-B and a unique CT-B lacking at least one epitope common to 569B CT-B. The missing epitope was located outside the GM1 ganglioside-binding site. From results of the study reported here, genetic divergence is exhibited in the El Tor biotype CT-B versus classical CT-B. Furthermore, at least five unique epitopes of V. cholerae 569B CT-B can be defined.  相似文献   

20.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号