首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of the neuromuscular junction on differentiating muscle was investigated in the regenerating limb of the newt Triturus. Motor end-plate formation begins when vesicle-filled axon terminations approach differentiating muscle cells that have reached the stage of a multinucleate cell containing myofibrils. Slight ridges or elevations occur on the muscle surface, and there is an increase in density of the cytoplasm immediately beneath the plasma membrane of the elevation. The axon becomes more closely approximated to the muscle cell and comes to lie in a shallow depression or gutter on the surface of the muscle. The surface ridges increase in length and constrict at their bases to form junctional folds. In the axon terminal, focal accumulations of vesicles are found where the axon contour projects slightly opposite the secondary synaptic clefts. Cholinesterase activity in the developing junctions was demonstrated by the thiolacetic acid-lead nitrate method. Enzymatic activity is not found on intercellular nerve fibers or the muscle surface prior to close approximation of axon endings and muscle. Eserine- and DFP-sensitive activity appears concurrently with morphological differentiation. Activity occurs in membranous tubulovesicles in the sarcoplasm subjacent to the neuromuscular junction and in association with the sarcolemma. The largest reaction deposits occur at the tips of the emerging junctional folds. Smaller and less numerous localizations occur on the axon membrane and within the axoplasm. It is concluded from these studies that the nerve endings have an inductive effect on both the morphological and chemical specializations of the neuromuscular junction.  相似文献   

2.
Seiei Aizu 《Tissue & cell》1982,14(2):329-339
Two morphologically distinct types of neuromuscular junction on the coxal leg muscles of the cockroach, Periplaneta americana, which have been physiologically described as innervated by fast, slow and inhibitory nerve fibers, have been found. In one type of neuromuscular junction the axon terminal contains many round clear synaptic vesicles and contacts several sarcoplasmic extensions from the muscle fiber. The muscle processes adhere to the axon terminal for a short distance (short contact or SC type). The axon terminal of the other type of neuromuscular junction directly contacts the muscle fiber and no extensions of the muscle fiber are formed. The contact region is comparatively long (long contact or LC type). The nerve terminal contains many polymorphic synaptic vesicles. From a correlation of the present morphological findings and the previous physiological results, it may be suggested that the SC type of nerve terminal represents both fast and slow nerve terminals and the inhibitory terminal is of the LC type.  相似文献   

3.
Motor end-plate disease (med) in the mouse is an hereditary defect of the neuromuscular system, with partial functional denervation and muscle inactivity in late stages of the disease. Motor end-plate disease is characterized by an intense ultraterminal sprouting of the motor nerves from swollen nerve terminal branches in the soleus muscle. At the ultrastructural level, the neuromuscular junctions extend to very wide territories, often outside the original motor end-plate, in regions where the nerve sprouts are in simple apposition to the muscle fiber, with no secondary synaptic folds. The nerve terminals are rich in neurofilaments and poor in synaptic vesicles.Freeze fracture analysis of the pre-synaptic and post-synaptic membrane specializations fails to reveal any important structural alteration which could suggest a defect in acetylcholine release or in muscle membrane excitability. However, the non-junctional sarcolemmal specializations (the so-called ‘square arrays’) arc found with a frequency slightly higher than in normal muscle.The nerve abnormalities at the neuromuscular junction may be either a consequence of muscle inactivity or the morphological expression of some primary nerve abnormality. Further studies of the soleus muscle at early stages of the disease may provide evidence in favor of either possibility.  相似文献   

4.
The structure of peripheral nerves, and the organization of the myoneural junctions in flight muscle fibers of a beetle is described. The uniaxonal presynaptic nerve branches display the "tunicated" structure reported in the case of other insect nerves and the relationship between the axon and the lemnoblast folds is discussed. The synapsing nerve terminal shows many similarities with that of central and peripheral junctions of other insects and of vertebrates (e.g., the intra-axonal synaptic vesicles) but certain important differences have been noted between this region in Tenebrio flight muscle and in other insect muscles. Firstly, the axon discards the lemnoblast before the junction is established and the axon effects a circumferential synapse with the plasma membrane of the fiber, which alone shows the increased thickness often observed in both pre- and postsynaptic elements. Secondly, in addition to the synaptic vesicles within the axon are present, in the immediately adjacent sarcoplasm, great numbers of larger postsynaptic vesicles which, it is tentatively suggested, may represent the sites of storage of the enzymatic destroyer of the activating substance similarly quantized within the intra-axonal vesicles. The spatial relationship between the peripherally located junctions and the portion of the fiber plasma membrane internalized as circumtracheolar sheaths is considered, and the possible significance of this with respect to impulse conduction is discussed briefly.  相似文献   

5.
Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.Supported by Muscular Dystrophy Association of Canada and NSERCC. Generous use of laboratory facilities at Woods Hole was provided by the late Fred Lang  相似文献   

6.
Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.  相似文献   

7.
smg p25A is a small G protein which has been suggested to regulate neurotransmitter release from the synapses. We investigated here the ultrastructural localization of this small G protein in the rat neuromuscular junction by an immunoperoxidase method. The results showed that smg p25A was distributed non-uniformly on the presynaptic plasma membrane and among the synaptic vesicles with the focal accumulation on the discrete presynaptic sites which corresponded to the active zones, the regions of the presynaptic plasma membrane specialized for the exocytosis of the synaptic vesicles. This unique distribution of smg p25A suggests that it plays an important role in the attachment and fusion of the synaptic vesicles with the active zones.  相似文献   

8.
Neuromuscular Junctions in Flight and Tymbal Muscles of the Cicada   总被引:1,自引:11,他引:1       下载免费PDF全文
The tymbal muscle fiber in the cicada closely resembles the indirect flight muscle fiber in its structural detail. We agree with other authors that the tymbal muscle is a modified indirect flight muscle. The peripheral nerve branches to the tymbal and flight muscle fibers are similar to those in the wasp leg. The axon is loosely mantled by irregular turns of the mesaxon, enclosing cytoplasm. The nerve is therefore a tunicated nerve. The neuromuscular junction in the high frequency muscle fibers shows direct apposition of plasma membranes of axon and muscle fiber, large numbers of mitochondria and synaptic vesicles in the axon, and concentrations of mitochondria, aposynaptic granules, and endoplasmic reticulum in the postsynaptic area of the muscle fiber. Of special interest is the multitude of intracellular, opposing membranes in the postsynaptic area. They form laminated stacks and whorls, vesicles, cysternae, and tubules. They occasionally show continuity with the plasma membrane, the outer nuclear envelope, and the circumfibrillar endoplasmic reticulum. The membrane system in this area is designated "rete synapticum." It is believed to add to the electrical capacity of the neuromuscular junction, to serve in transmission of potentials, and possibly is the site of the oscillating mechanism in high-frequency muscle fibers.  相似文献   

9.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

10.
Effects of pyrocatechol on neuromuscular transmission were studied both in the frog pectoral-cutaneous muscle and in the mouse phrenic-diaphragmatic preparation by means of extracellular microelectrode recording of synaptic signals. Pyrocatechol applied in a concentration of 0.05 mM increased the frequency of miniature end-plate currents (MEPC) and the amplitude of end-plate current (EPC) by increasing its quantum content. Pyrocatechol also increased the duration of presynaptic response. When voltage-dependent potassium channels had been blocked, pyrocatechol affected neither the EPC quantum content nor the duration of presynaptic response. It is suggested that the pyrocatechol-induced enhancement of transmitter release results from modulatory effects of pyrocatechol on voltage-dependent potassium current in the membrane of a nerve terminal.Neirofiziologiya/Neurophysiology, Vol. 25, No. 6, pp. 405–408, November–December, 1993.  相似文献   

11.
A study of the cytochemical localization of acetylcholiriesterase activity, combining histochemistry with electron microscopy, showed that the final product of the reaction, which was deposited at or near enzyme sites, occurred at four places in the myoneural junction. These included: plasma membrane of the muscle covering the junctional folds, the primary and secondary synaptic clefts, parts of the plasma membrane covering the axon terminal, and vesicular structures in the terminal axoplasm. No reaction occurred in the presence of 10-4 eserine or DFP, whereas 10-5 DFP inhibited the reaction at all sites except in the vesicles of the terminal axon. These findings are discussed with reference to the histochemical method used and to the occurrence of esterolytic activity in the vesicles, as well as to some of the current hypotheses concerning the relationship of the site of acetylcholinesterase and synaptic transmission.  相似文献   

12.
Intracellular recordings of spontaneous and evoked end-plate potentials have been made at the neuromuscular junction of mouse hemidiaphragms to determine a possible role of cyclic AMP (cAMP) in the release of acetylcholine from presynaptic terminals. Spontaneous release, as determined from the frequency of miniature end-plate potentials, was increased by drugs that inhibit phosphodiesterase: isobutylmethylxanthine (IBMX), SQ 20,009, theophylline, and caffeine; drugs that stimulate adenylate cyclase: forskolin, fluoride, and cholera toxin, and the stable analogue of cAMP: 8-bromo-cAMP but not dibutyryl cAMP. Release increased with time during maintained exposure to the drugs and generally followed a simple exponential time course with time constants ranging from 8 to 17 min at 20 degrees C, except for SQ 20,009 and cholera toxin which required longer exposure times for effect. The order of potency of the phosphodiesterase inhibitors was IBMX = SQ 20,009 greater than theophylline = caffeine. This is consistent with an effect mediated by an increase in cAMP concentrations within the nerve terminal. Evoked release, determined from the quantal content of the end-plate potential, was increased to a lesser extent than spontaneous release. The results are discussed with reference to the possible involvement of second messengers in the release of vesicles from nerve terminals in vertebrate synapses.  相似文献   

13.
Following amputation of the limb of the newt, Triturus viridescens, muscle fibers dedifferentiate giving rise to mesenchymal cells. The earliest changes detected in neuromuscular junctions of dedifferentiating muscle fibers are the appearance of a few vacuoles and decrease in density of the terminal axoplasm. Later, synaptic vesicles become tightly clustered in the axon termination, and their content appears denser than normal. Then, vesicles diminish in number until few are seen in the ending. While these changes are occurring, the area of contact of nerve with muscle becomes smaller. Junctional folds persist only where the nerve maintains contact with muscle, but these are shorter than normal and appear as slight ridges on the muscle surface. Subsequently, the nerve withdraws from the muscle cell and is completely invested by Schwann cell cytoplasm, and all traces of junctional folds are lost at the former region of contact. Cholinesterase activity was localized with the thiolacetic acid-lead nitrate method. Even before marked morphological changes occur in the junction, DFP- and physostigmine-sensitive activity in the cleft between nerve and muscle is decreased in intensity. Activity continues to decrease as the area of nerve-muscle contact diminishes and junctional folds disappear. When the nerve has withdrawn from the muscle surface, only a few small deposits of lead are left in the intervening region. These results show that as muscle becomes less specialized during dedifferentiation, the neuromuscular junction also loses the cytological and cytochemical specializations associated with synaptic function.  相似文献   

14.
The effects of neuromuscular blocking drugs on the development of slow and fast muscle fibres and their neuromuscular junctions was studied in chick embryos.
Treatment of embryos with the depolarizing neuromuscular blocking agent suxamethonium affected the development of muscle fibres of the slow anterior latissimus dorsi (ALD) muscle more than that of muscle fibres of the posterior latissimus dorsi (PLD). The differentiation of the presynaptic elements of the neuromuscular junction was delayed and this was particularly obvious in PLD. Normally the number of axon profiles at individual endplates is reduced by 18 days of incubation, but in suxamethonium treated embryos this reduction took place only at 21 days. During earlier stages of development the axon profiles from treated embryos were small with sparse synaptic vesicles. Nevertheless the subsynaptic site of endplates on ALD and PLD muscle fibres became specialized earlier than normal and to a greater extent. Treatment with hemicholinium (HC-3), a drug that reduces the synthesis of acetylcholine (ACh) in nerve terminals affected the development of PLD muscle fibres more than ALD muscle fibres. Although in HC-3 treated embryos nerve-muscle contacts were formed, the axon terminals look immature and remain small even in 18-day old embryos at both ALD and PLD muscle fibres. The reduction of the number of axon profiles normally seen at 18 days failed to take place in treated embryos. At 18 days of incubation many endplates on PLD muscle fibres showed little sign of postsynaptic specilization and resembled endplates usually seen at this stage on ALD muscle fibres.
It is concluded that while neuromuscular activity may be important for the reduction of the number of axon profiles at individual endplates, the specialization of the subsynaptic membrane is brought about by depolarizing effect of ACh.  相似文献   

15.
The labeling patterns produced by radioiodinated botulinum neurotoxin (125I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. 125I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. 125I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. Although 125I-BoNT type A interacts specifically with developing terminals of newborn rats, the unmyelinated plasma membrane of the nerve trunk is not labeled, indicating that the acceptors are unique components restricted to the nerve terminal area. BoNT types A and B have distinct acceptors on the terminal membrane. Having optimized the conditions for saturation of these binding sites and calibrated the autoradiographic procedure, we found the densities of the acceptors for types A and B to be approximately 150 and 630/micron 2 of membrane, respectively. It is proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release.  相似文献   

16.
Whole-mount stereo electron microscopy has been used to examine the cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor (AChR) clusters in cultures of Xenopus nerve and muscle cells. The cells were grown on Formvar-coated gold electron microscope (EM) finder grids. AChR clusters were identified in live cultures by fluorescence microscopy after labeling with tetramethylrhodamine-conjugated alpha-bungarotoxin. After chemical fixation and critical-point drying, the cytoplasmic specializations of identified cells were examined in whole mount under an electron microscope. In the presynaptic nerve terminal opposite to the AChR cluster, synaptic vesicles were clearly suspended in a lattice of 5-12- nm filaments. Stereo microscopy showed that these filaments directly contacted the vesicles. This lattice was also contiguous with the filament bundle that formed the core of the axon. At the AChR cluster, an increased cytoplasmic density differentiated this area from the rest of the cytoplasm. This density was composed of a meshwork of filaments with a mean diameter of 6 nm and irregularly shaped membrane cisternae 0.1-0.5 micron in width, which resembled the smooth endoplasmic reticulum. These membrane structures were interconnected via the filaments. Organelles that were characteristic of the bulk of the sarcoplasm such as the rough endoplasmic reticulum and the polysomes, were absent from the cytoplasm associated with the AChR cluster. These results indicate that the cytoskeleton may play an important role in the development and/or the maintenance of the neuromuscular synapse, including the release of transmitter in the nerve terminal and the clustering of AChRs in the postsynaptic membrane.  相似文献   

17.
1.大白鼠下丘中心核(the Central Nucleus of the Inferior Colliculus,ICCN)内神经末稍以群体的形式有在,神经突触排列的类型主要为系列突触.2.末稍群体(Clustered ending)中轴突终末内含有多种类型的突触小泡.3.ICCN内具有不对称突触与对称突触两种类型的突触结构.4.在ICCN内,突触前终末有大量的突触小泡聚集,并且在突触后常有1—2个大线粒体靠近突触后膜.5.以上结果表明了脑干听觉中枢下丘中心核的结构及其突触连结的模式;突触的结构及其特点,这是频有意义的.  相似文献   

18.
H Kita  K Madden  W Van der Kloot 《Life sciences》1975,17(12):1837-1841
The ionophore A-23187 when added to the usual Ca2+-Ringer at the frog neuromuscular junction has almost no effect on the frequency of miniature end-plate potentials (min.e.p.p.s). The ionophore does increase the rate of Ca2+ efflux from frog muscle, so it is in effective concentrations in the Ringer. When added to Ringer containing Ni2+ instead of Ca2+, the ionophore increases the min.e.p.p. frequency. We suggest that the ionophore can carry divalent cations into the terminal, but there are mechanisms to keep the Ca2+ low.Apparently these mechanisms are unable to rapidly eject or sequester Ni2+.  相似文献   

19.
The actin cytoskeleton and neurotransmitter release: an overview   总被引:12,自引:0,他引:12  
Doussau F  Augustine GJ 《Biochimie》2000,82(4):353-363
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.  相似文献   

20.
Under conditions of reduced quantal content, repetitive stimulation of a presynaptic nerve can result in a progressive increase in the amount of transmitter released by that nerve in response to stimulation. At the frog neuromuscular junction, this increase in release has been attributed to four different processes: first and second components of facilitation, augmentation, and potentiation (e.g., Zengel, J. E., and K. L. Magleby. 1982. Journal of General Physiology. 80:583-611). It has been suggested that an increased entry of Ca2+ or an accumulation of intraterminal Ca2+ may be responsible for one or more of these processes. To test this hypothesis, we have examined the role of intracellular Ca2+ in mediating changes in end-plate potential (EPP) amplitude during and after repetitive stimulation at the frog neuromuscular junction. We found that increasing the extracellular Ca2+ concentration or exposing the preparation to carbonyl cyanide m- chlorophenylhydrazone, ionomycin, or cyclopiazonic acid all led to a greater increase in EPP amplitude during conditioning trains of 10-200 impulses applied at a frequency of 20 impulses/s. These experimental manipulations, all of which have been shown to increase intracellular levels of Ca2+, appeared to act by increasing primarily the augmentation component of increased release. The results of this study are consistent with previous suggestions that the different components of increased release represent different mechanisms, and that Ca2+ may be acting at more than one site in the nerve terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号