首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various concentrations of urea and guanidine hydrochloride on enzyme activity and on subunit association were determined. Incubation of thymidylate synthetase with buffered solutions of 3M to 3.5M guanidine hydrochloride or 5 M to 6 M urea resulted in the loss of about 90% of the enzyme activity. Under these denaturing conditions a red shift of the fluorescence emission maximum from 340 nm to 351 nm was observed together with a significant decrease in the relative fluorescence intensity of the protein. Studies at both 4 degrees C and 25 degrees C indicated that the enzyme was in the dimer form in 2 M guanidine hydrochloride but was dissociated into monomers in concentrations of this denaturant of 3 M and above. Although only monomeric species were evident at 4 degrees C in 6 M urea, at 25 25 degrees C this denaturant caused protein aggregation which increased with decreasing phosphate buffer concentration. Enzyme (5 mg/ml) in 0.5 M potassium phosphate buffer, pH 6.8, containing 4 M guanidine hydrochloride gave a minimum S20, w value of 1.22S at 25 degrees C. Sedimentation behavior of the native enzyme in the range of 5 to 20 mg/ml was only slightly concentration-dependent (4.28 S to 4.86 S) but extensive aggregation occurred above 20 mg/ml.  相似文献   

2.
An acetyl-coenzyme-A hydrolase from the supernatant fraction of rat liver is known to be rapidly inactivated at low temperature. Loss of catalytic activity is accompanied by apparent dissociation of tetrameric and dimeric forms of the enzyme into monomers. It was found that rewarming under appropriate conditions almost completely reversed the cold-induced inactivation and dissociation of the enzyme: At a protein concentration of 14 micrograms/ml, simple rewarming only partially restored the enzyme activity (less than 3% of the original activity), but at a higher concentration of the enzyme or in the presence of 1 mg/ml bovine serum albumin, the reactivation by warming was greater. Warming at 37 degrees C appeared to be optimal for reactivation; warming at 25 degrees C or at 43 degrees C was less effective. Longer exposure to cold did not affect reactivation on rewarming, but on repeated inactivation and reactivation the reactivation decreased to some extent, especially at lower concentrations of enzyme protein. Among various nucleotides tested, ATP greatly enhanced the restoration of the activity, while ITP, UTP and ADP were less effective and AMP, GTP, TTP and CTP had little effect. At an enzyme-protein concentration of 14 micrograms/ml, 2 mM ATP restored the enzyme activity to about 70% of that before cold treatment, while acetyl-CoA (0.5 mM) restored the activity about 50%. High concentrations of phosphate (0.92 M) and pyrophosphate (0.45 M) restored about 80% and 95%, respectively, of the original activity. Sucrose density gradient centrifugation of the active dimer at high enzyme concentration at 4 degrees C for 20 h produced a monomeric form without catalytic activity. Gel filtration showed that simple rewarming mostly converted the monomeric enzyme obtained in this way to the dimeric form, whereas on rewarming with ATP the monomer was mostly converted to a tetrameric form. The dimeric and tetrameric forms both had catalytic activity.  相似文献   

3.
The aim of the study was to improve the elimination of egg stickiness in tench as an attempt to increase the egg hatching rate. The usual desticking procedure involving treatment with milk solution/clay suspension resulted in a hatching rate of 74.1%. The highest hatching rate of 87.1% was found with a 10.0 ml L?1 enzyme treatment; hatching rates of 85.2 and 85.1% were recorded at 15.0 and 5.0 ml L?1, but the hatching rate decreased to 80.0% at 20.0 ml L?1. anova showed a significant effect of differing concentrations of enzyme and milk solution/clay suspension control (P < 0.0015, P < 0.0003) on the hatching rate and duration of egg incubation until hatching, respectively. Application of proteolytic alcalase enzyme, Merck EC 3.4.21.14, for desticking of tench eggs also decreased the time of egg handling from almost 1 h, necessary for traditional milk/clay desticking, to just 2 min.  相似文献   

4.
Characterization of glucoamylase from Lactobacillus amylovorus ATCC 33621   总被引:2,自引:0,他引:2  
Summary An intracellular glucoamylase, purified from Lactobacillus amylovorus, reacted selectively with polysaccharides. Kinetic studies indicated low affinity for maltose and maltotriose (Km 58 g/ml and 178 g/ml) and higher affinity for starch and dextrin (Km 0.01 g/ml and 0.02 g/ml). Glucoamylase was inhibited almost 50% by 10 mM glucose. Cu2+ and Pb2+ inhibited glucoamylase at 1.0 mM but EDTA and other metal chelators had no effect on the enzyme activity. Acarbose and Tris inhibited the enzyme by 84% and 98%, respectively at 1 mM, while iodoacetate and p-chloromecuribenzoic acid inhibited activity by 98% and 78%, respectively at 10 mM. The purified enzyme was thermolabile at temperatures greater than 55°C and thus has potential for application in the brewing industry.  相似文献   

5.
Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching beta-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low apparent molecular weight of 5,500 by native gel filtration, but its denatured molecular weight was 22,600 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had an isoelectric point of 9.5. The pH and temperature optima for hydrolysis of arabinoxylan were 6.5 to 7.0 and 60 degrees C, respectively, and more than 75% of the optimum enzyme activity was retained at pH 8.0. The xylanase had a K(m) of 7.9 mg/ml and an apparent V(max) of 305 mumol . min . mg of protein. The hydrolysis rate was linear for xylan concentrations of less than 4 mg/ml, but significant inhibition was observed at xylan concentrations of more than 10 mg/ml. The predominant products of arabinoxylan hydrolysis included arabinose, xylobiose, and xylotriose.  相似文献   

6.
A strain of Aspergillus terreus 4 was found to show extracellular amylolytic activity and the amylase was identified as glucoamylase enzyme. The optimum temperature for the enzyme activity was 60% and it was stable at this temperature for 1 h. The enzyme was optimally active at pH 5.0 and stable between pH 3.0-8.0. Km values of glucoamylase for soluble starch, amylose and amylopectin were 5.9 mg/ml, 4.8 mg/ml and 2.6 mg/ml respectively.  相似文献   

7.
The concentration of fructose 2,6-bisphosphate found in freshly isolated erythrocytes was below the limit of detection (20 pmol/ml of packed cells). However, it increased to about 250 pmol/ml of cells when erythrocytes were incubated with glucose at pH 6.9, but not at pH 7.4 or 8.2. This could be explained by variations in the content of glycerate 2,3-bisphosphate, which was found to inhibit 6-phosphofructo-2-kinase, the enzyme responsible for fructose 2,6-bisphosphate synthesis. Glycerate 2,3-bisphosphate was also found to inhibit the potato enzyme (pyrophosphate:fructose-6-phosphate 1-phosphotransferase) used for the measurement of fructose 2,6-bisphosphate.  相似文献   

8.
Ca(2+)-ATPase of plasma membranes (PMCA) was isolated from either human or pig red cells by calmodulin-affinity chromatography and supplemented with phosphatidylcholine (PC). The specific activity of the purified PMCA diluted in media with detergent (C(12)E(10)) was very low, and increased with the concentration of the enzyme along a curve that reached the maximum at 8 microg/ml with K(0.5)=1.2-2.5 microg/ml. Such behavior has been described and attributed to self-association of the enzyme (D. Kosk-Kosicka and T. Bzdega, J. Biol. Chem. 263 (1988) 18184-18189). After heat-inactivation, the PMCA was as effective an activator as the intact enzyme, increasing, to the maximum, the specific activity of diluted enzyme with K(0. 5)=2.2 microg/ml. The inactivated PMCA failed to increase the activity of concentrated enzyme, suggesting that activation did not depend on interaction of intact with denatured enzyme molecules. When enough PC was added to the reaction medium to make its final concentration 16-33 microg/ml, the specific activity of the PMCA was maximum and independent of enzyme concentration. Under these conditions, activation by calmodulin lowered to 10%. As a function of the concentration of pure PC, maximum specific activity was reached along a curve with K(0.5)=4 microg/ml. This curve was identical to that of activation at increasing enzyme concentration, suggesting that, in the latter case, activation could have depended on PC contributed to the assay medium by the enzyme. The results show that PC made the purified PMCA solubilized in detergent reach maximum activity at any concentration of the enzyme.  相似文献   

9.
Physiological studies on Streptomyces erythrus NRRL ISP 5517 grown on fourteen different media have revealed that the enzyme was formed and released in the medium with different levels depending upon the type of the medium and the carbon source used. The results indicate that S. erythrus produced the highest level of extracellular and endocellular enzyme when grown in modified Czapek-Dox's medium (containing 2% D-galactose as the only carbon source). The highest levels of enzyme formation was obtained upon using D-galactose (9.94 Units/ml and 2.92 Units/ml), raffinose (8.87 Units/ml and 2.69 Units/ml) or melibiose (8.14 Units/ml and 2.52 Units/ml) at a final concentration of 2% as inducers for extra- and endocellular enzyme, respectively. With respect to nitrogen sources tested, sodium nitrate produced the highest level of alpha-galactosidase in both fractions optimally at 2.0 g/l. Studies revealed that the extracellular enzyme levels were produced optimally at initial pH in culture of 7.0 and air:medium ratio in flasks corresponding to 1:5 and after 5 days of incubation at 30 degrees C. On testing the effect of the addition of eight leguminous seeds powders (at a final concentration of 2%), it was found that soybean powder gave the highest induction effect. The addition of sodium nitrate at a concentration of 2 g/l to Dox's soybean medium, the adjustment of initial pH value of the medium to 7.0 and the air:medium ratio in flasks to 1:5 for an incubation period of 4 days produced the highest level of extracellular alpha-galactosidase.  相似文献   

10.
White-rot fungi of the Phylum Basidiomycota are quite promising in ligninolytic enzyme production and the optimization of their synthesis is of particular significance. The aim of this study was to investigate the effect of enhanced concentration of copper (Cu) ions (25–1000 μg/ml) on the activity of the ligninolytic enzyme complex (laccase, Lac; lignin peroxidase, LiP; Mn-peroxidase, MnP) in Trametes trogii 46, as well as the changes in the antioxidant cell response. All concentrations tested reduced significantly in growth and glucose consumption. Cu ions affected the ligninolytic enzyme activity in a dose dependent manner. Concentrations in the range of 25–100 μg/ml strongly stimulated Lac production (a 5–6-fold increase compared to the control). LiP activity was also induced by Cu, with the peak value being recorded following exposure to 50 μg/ml metal ions. In contrast, the addition of Cu ions had a positive effect on MnP activity at a concentration higher than 100 μg/ml. The maximum enzyme level was achieved at 1000 μg/ml. The results obtained on superoxide dismutase and catalase activities indicated that exposure of T. trogii 46 mycelia to Cu ions promoted oxidative stress. Both enzyme activities were co-ordinately produced with Lac and LiP but not co-ordinately with MnP.  相似文献   

11.
The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (alpha-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II alpha-glucosidase. The optimum temperature of the enzyme was 70 degrees . In addition, the enzyme was highly thermostable (100% stability for 10 h at 60 degrees and a half-life of 15 min at 80 degrees), and stable within a wide pH range.  相似文献   

12.
Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/ polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at 60 degrees C, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at 40 degrees C. The apparent Km of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.  相似文献   

13.
In the present study, the optimization of production and reaction conditions of polygalacturonase produced by a fungus Byssochlamys fulva MTCC 505 was achieved. The production of polygalacturonase with a considerable activity of 1.28 IU/ml was found when the culture was shaken at 30°C for 5 days in 100 ml of medium containing (w/v) 10 g/l pectin, 2 g/l NaNO?, 1 g/l KH?PO?, 0.5 g/l KCl, 0.5 g/l MgSO?. 7H?O, 0.001 g/l FeSO?. 7H?O, 0.001 g/l CaCl?. The best carbon and nitrogen source for this enzyme were pectin (1%) and Ca(NO?)? (0.1%), respectively. The enzyme gave maximum activity at incubation time of 72 h, temperature of 30°C and pH 4.5. During the optimization of reaction conditions, the enzyme showed maximum activity in sodium citrate buffer (50 mM) of pH 5.5 at 50°C reaction temperature for 15 minutes of incubation. The enzyme showed greater affinity for polygalacturonic acid as substrate (0.5%). Km and Vmax values were 0.15 mg/ml and 4.58 μmol/ml/min. The effect of various phenolics, thiols, protein inhibitors and metal ions on the enzyme activity was investigated. The enzyme was quite stable at 4°C and 30°C. At 40°C the half life of the enzyme was 6 h and at 60°C it was 2 h.  相似文献   

14.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

15.
Insulin and type I insulin-like growth factor (IGF-I) suppressed growth hormone (GH) expression followed by the induction of prolactin (PRL) biosynthesis in MtT/S cells cultured with normal sera. Insulin also increased the peptidylarginine deiminase activity in a dose-dependent manner. The increase was detectable at 1 ng/ml and reached a maximum (about 16-fold higher than the control) at 1 micrograms/ml. IGF-I showed similar but less prominent effects. The enzyme activity started to increase by 15 hr after the addition of insulin (500 ng/ml), and reached a plateau level at 48 hr. There were concurrent increases in the enzyme mRNA level, enzyme biosynthesis, and enzyme protein contents detected by Northern blot hybridization, [35S]-amino-acid incorporation, and Western immunoblot analysis, respectively. Two-color immunofluorescence staining at 1 day after the insulin addition detected a small number of peptidylarginine-deiminase-positive cells (about 1% of the total cells) which were also GH-positive. The enzyme-positive cells increased to 12% on day 2 and to 24-26% on days 4-6. PRL-positive cells first appeared in the enzyme-positive cell population on day 2, and PRL-positive, enzyme-negative cells appeared later. These results suggest that peptidylarginine deiminase expression increases in association with the hormone switching in MtT/S cells. When the cells were cultured in a steroid-depleted medium, insulin failed to increase the enzyme activity. The insulin action could be specifically restored by estrogen, indicating estrogen-insulin synergism in regulation of the enzyme expression.  相似文献   

16.
alpha-Ketoglutarate dehydrogenase has been demonstrated for the first time in cell extracts from the filamentous fungus Aspergillus niger. A minimum protein concentration of 5 mg/ml is necessary for detecting enzyme activity, but a maximum of ca. 0.060 mumol/min per mg of protein is observed only when the protein concentration is above 9 mg/ml. alpha-Ketoglutarate can partly stabilize the enzyme against dilution in the assay system. Neither bovine serum albumin nor a variety of substrates or effectors of the enzyme could stabilize the enzyme against inactivation by dilution. A kinetic analysis of the enzyme revealed Michaelis-Menten kinetics with respect to alpha-ketoglutarate, coenzyme A, and NAD. Thiamine PPi was required for maximal activity. NADH, oxaloacetate, succinate, and cis-aconitate were found to inhibit the enzyme; AMP was without effect. Monovalent cations including NH4+ were inhibitory at high concentrations (greater than 20 mM). The highest enzyme activity was found in rapidly growing mycelia (glucose-NH4+ or glucose-peptone medium). We discuss the possibility that citric acid accumulation is caused by oxaloacetate and NADH inhibition of the alpha-ketoglutarate dehydrogenase of A. niger.  相似文献   

17.
A microfabricated amperometric microcell was designed and used for the determination of proline iminopeptidase (PIP) enzyme activity in 2-10-microl samples. The measurements were made in the range of 10.3-841.5 mU/ml enzyme activities. The sensitivity of the determinations was between - 0.0195 and - 0.0203 microA ml/mU per min. The coefficient of variation of the determined values ranged between 2.8 (at 561.2 mU/ml) and 24.1% (at 10.3 mU/ml). The microcell was manufactured on an alumina substrate using screen-printed graphite working and Ag/AgCl reference electrodes. Elevated PIP activity in the vaginal fluid is a biochemical indicator of bacterial vaginosis. The method is appropriate to differentiate between normal (66+/-145 mU/ml) and elevated, diseased (704+/-145 mU/ml), values.  相似文献   

18.
19.
Summary The histochemical localization of cholesterol using oxidized diaminobenzidine as the final reaction product was studied at the electron microscopical level and compared with the digitonin method of cholesterol localization based on cholesterol digitonide as the final reaction product. Tissue chopper sections of fixed rat adrenal glands were incubated at 37° C in a medium consisting of 0.8 units/ml cholesterol oxidase, 1.4 units/ml cholesterol ester hydrolase, 50 units/ml horseradish peroxidase, 0.5 mg/ml diaminobenzidine, 0.1% v/v Triton X-100 (or Surfal) and an endogenous peroxidase inhibitor in 0.1m phosphate buffer, pH 7.0. An electron-dense osmiophilic reaction product was observed in many lipid droplets, intracellular vesicles and focally around mitochondria. Appropriate control experiments indicated that deposition of reaction product depended on the presence of cholesterol and the necessary enzymes. Comparison studies using digitonin confirmed the presence of cholesterol in the lipid droplets, but ultrastructural distortion limited the resolution of the more discrete deposits of cholesterol such as around mitochondria. The enzyme method permits finer resolution of these discrete deposits of cholesterol than the digitonin method because it does not cause distortion of cellular ultrastructure attributed to the formation of cholesterol digitonide. The enzyme method or a combination of enzyme and digitonin enables localization of free, esterified or total cholesterol.  相似文献   

20.
The effect of praziquantel (PZQ) on secretion of proteolytic enzyme by Schistosoma mansoni cercariae was examined using an azocoll assay. The cercariae secreted proteolytic enzyme in various concentrations of PZQ (0.1, 1, and 10 micrograms/ml), but secretion of enzyme was highest at the lowest concentration. PZQ-induced secretion of proteolytic enzyme was partially inhibited by treatment with verapamil and ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetra-acetic acid but not by calmodulin antagonist W-7 and protein kinase C inhibitor H-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号