首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell–cell interaction is an integral part of embryoid body (EB) formation controlling 3D aggregation. Manipulation of embryonic stem (ES) cell interactions could provide control over EB formation. Studies have shown a direct relationship between EB formation and ES cell differentiation. We have previously described a cell surface modification and cross-linking method for influencing cell–cell interaction and formation of multicellular constructs. Here we show further characterisation of this engineered aggregation. We demonstrate that engineering accelerates ES cell aggregation, forming larger, denser and more stable EBs than control samples, with no significant decrease in constituent ES cell viability. However, extended culture ≥5 days reveals significant core necrosis creating a layered EB structure. Accelerated aggregation through engineering circumvents this problem as EB formation time is reduced. We conclude that the proposed engineering method influences initial ES cell-ES cell interactions and EB formation. This methodology could be employed to further our understanding of intrinsic EB properties and their effect on ES cell differentiation.  相似文献   

2.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

3.
4.
5.
Myofibrillogenesis - sarcomeres - mouse embryonic stem cells - cardiomyocytes - beta1 integrin Mouse embryonic stem (ES) cells, when cultivated as embryoid bodies, differentiate in vitro into cardiomyocytes of ventricle-, atrium- and pacemaker-like cell types characterized by developmentally controlled expression of cardiac-specific genes, structural proteins and ion channels. Using this model system, we show here, (I) that during cardiac myofibrillogenesis sarcomeric proteins are organized in a developmentally regulated manner following the order: titin (Z-disk), alpha-actinin, myomesin, titin (M-band), myosin heavy chain, alpha-actin, cardiac troponin T and M-protein, recapitulating the sarcomeric organization in the chicken embryonal heart in vivo. Our data support the view that the formation of I-Z-I complexes is developmentally delayed with respect to A-band assembly. We show (2) that the process of cardiogenic differentiation in vitro is influenced by medium components: Using a culture medium supplemented with glucose, amino acids, vitamins and selenium ions, we were able to increase the efficiency of cardiac differentiation of wild-type, as well as of beta1 integrin-deficient (beta1-/-) ES cells, and to improve the degree of organization of sarcomeric structures in wild-type and in beta1-/- cardiac cells. The data demonstrate the plasticity of cardiogenesis during the differentiation of wild-type and of genetically modified ES cells.  相似文献   

6.
Embryonic stem (ES) cells differentiate into multiple hematopoietic lineages during embryoid body formation in vitro, but to date, an ES-derived hematopoietic stem cell has not been identified and subjected to clonal analysis in a manner comparable with hematopoietic stem cells from adult bone marrow. As the chronic myeloid leukemia-associated BCR/ABL oncogene endows the adult hematopoietic stem cell with clonal dominance without inhibiting pluripotent lymphoid and myeloid differentiation, we have used BCR/ABL as a tool to enable engraftment and clonal analysis. We show that embryoid body-derived hematopoietic progenitors expressing BCR/ABL maintain a primitive hematopoietic blast stage of differentiation and generate only primitive erythroid cell types in vitro. These cells can be cloned, and when injected into irradiated adult mice, they differentiate into multiple myeloid cell types as well as T and B lymphocytes. While the injected cells express embryonic (beta-H1) globin, donor-derived erythroid cells in the recipient express only adult (beta-major) globin, suggesting that these cells undergo globin gene switching and developmental maturation in vivo. These data demonstrate that an embryonic hematopoietic stem cell arises in vitro during ES cell differentiation that constitutes a common progenitor for embryonic erythroid and definitive lymphoid-myeloid hematopoiesis.  相似文献   

7.
Embryonic stem (ES) cells have indefinite self-renewal ability and pluripotency, and can provide a novel cell source for tissue engineering applications. In this study, a murine CCE ES cell line was used to derive hematopoietic cells in a 3-D fibrous matrix. The 3-D matrix was found to maintain the phenotypes of undifferentiated ES cells as indicated by alkaline phosphatase (ALP) activity and stage specific embryonic antigen-1 (SSEA-1) expression. In hematopoietic differentiation, cells from 3-D culture exhibited similar cell cycle distribution and SSEA-1 expression to those in the initial cell population. The Oct-4 expression was significantly down-regulated, which indicated the occurrence of differentiation, although the level was slightly higher than that in Petri dish culture. The expression of c-kit, cell surface marker for hematopoietic progenitor, was higher in the 3-D culture, suggesting a better-directed hematopoietic differentiation. Cells in the 3-D matrix tended to form large aggregates associated with fibers. For large-scale processes, a perfusion bioreactor can be used for both maintenance and differentiation cultures. As compared to the static culture, a higher growth rate and final cell density were resulted from the perfusion bioreactor due to better control of the reactor environment. At the same time, the differentiation capacity of ES cells was preserved in the perfusion culture. The ES cell culture in the fibrous matrix thus can be used as a 3-D model system to study effects of extracellular environment and associated physico-chemical parameters on ES cell maintenance and differentiation.  相似文献   

8.
9.
Embryonic stem (ES) cells have attracted much attention as a possible source of functional cells for regenerative medicine. Therapeutic use of ES cells requires control over the types and frequencies of cells generated during their in vitro differentiation. Due to the complexity of factors that impact upon ES cell differentiation, novel approaches for the optimization of tissue-specific development are required. This motivates our use of factorial and composite design methods to make empirical investigations more efficient, and to reveal unexpected interactions missed by conventional dose-response analysis. Factorial experiments would benefit from the high content evaluation of a large number of test conditions, necessitating the development of a quantitative screening technology (QST) capable of reporting the absolute number and frequency of target cells. We have developed and validated such a technology for ES cell differentiation analysis using automated fluorescence microscopy, employing endoderm differentiation as a model system. To test this platform, a two-level factorial experiment was carried out to identify major and interactive effects of glucose, insulin, retinoic acid (RA), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) on endoderm formation. RA was found to have inhibitory effects on endoderm formation, while low glucose proved beneficial. QST was demonstrated to be a powerful tool to study factors impacting endoderm-specific ES cell differentiation, and should be applicable to the analysis of a range of ES cell-derived tissues.  相似文献   

10.
11.
The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.  相似文献   

12.
Embryonic stem cells (ES cells), the pluripotent derivatives of the inner cell mass from blastocysts, have the capacity for unlimited growth, self-renewal and differentiation toward all types of somatic cells. Angiotensin II (Ang II), the most important effector peptide of the renin–angiotensin system, is also an angiogenesis factor. However, the potential impact of Ang II on ES cell differentiation is still unknown. In the present study, we have successfully induced the differentiation of ES cells into smooth muscle cells (SMCs) on collagen IV. Interestingly, incubation of ES cells with Ang II further promoted SMC differentiation from ES cells, which was abolished by prior treatment with Ang II type 1 (AT1) receptor antagonist losartan, but not Ang II type 2 (AT2) receptor antagonist PD123319. Moreover, we found that, in parallel with SMC specific-marker induction, the expression levels of phosphoAkt and NF-Kappa B (NF-κB) p50 were up-regulated by Ang II. Importantly, addition of phosphoinositide-3 kinase (PI3K) inhibitor LY294002 led to a marked inhibition of Ang II induced SMC specific markers, phosphoAkt and NF-κB p50 expression. Furthermore, NF-κB inhibitor BAY11-7082 can inhibit Ang II induced expression of SMC specific markers. Thus, we demonstrate for the first time that Ang II plays a promotive role in the stage of ES cell differentiation to SMCs through AT1 receptor. We further confirmed that PI3K/Akt signaling pathway and NF-κB play key roles in this process.  相似文献   

13.
14.
15.
Embryonic stem (ES) cells are pluripotent stem cells and give rise to a variety of differentiated cell types including neurons. To study a molecular basis for differentiation from ES cells to neural cells, we searched for proteins involved in mouse neurogenesis from ES cells to neural stem (NS) cells and neurons by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting, using highly homogeneous cells differentiated from ES cells in vitro. We newly identified seven proteins with increased expression and one protein with decreased expression from ES cells to NS cells, and eight proteins with decreased expression from NS cells to neurons. Western blot analysis confirmed that a tumor-specific transplantation antigen, HS90B, decreased, and an extracellular matrix and membrane glycoprotein (such as laminin)-binding protein, galectin 1 (LEG1), increased in NS cells, and LEG1 and a cell adhesion receptor, laminin receptor (RSSA), decreased in neurons. The results of RT-PCR showed that mRNA of LEG1 was also up-regulated in NS cells and down-regulated in neurons, implying an important role of LEG1 in regulating the differentiation. The differentially expressed proteins identified here provide insight into the molecular basis of neurogenesis from ES cells to NS cells and neurons.  相似文献   

16.
The cancer microenvironment affects cancer cell proliferation and growth. Embryonic stem (ES)-preconditioned 3-dimensional (3-D) culture of cancer cells induces cancer cell reprogramming and results in a change in cancer cell properties such as differentiation and migration in skin melanoma. However, the mechanism has not yet been clarified. Using the ES-preconditioned 3-D microenvironment model, we provide evidence showing that the ES microenvironment inhibits proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. We also found that the ES microenvironment suppresses telomerase activity and thereby induces senescence in SK-MEL-28 cells. Furthermore, we observed that gremlin, an antagonist of BMP4, is secreted from ES cells and plays an important role in cellular senescence. Knocking down gremlin in the ES microenvironment increases proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. Taken together, these results demonstrated that gremlin is a crucial factor responsible for abrogating melanoma properties in the ES-preconditioned 3-D microenvironment.  相似文献   

17.
Embryonic stem (ES) cell differentiation is regulated by cytokines and growth factors, as well as small-compound chemicals incorporated into cells by transporter proteins. Little is known regarding the effect of transporters on ES cell differentiation. This study focused on the effect of transporters during the neural-lineage differentiation of ES cells. Among the 27 types of SLC family transporters, MCT8 expression was coincident with that of neural stem cell markers, and the overexpression of MCT8 accelerated the differentiation into neural cells. These results suggested that the transporters and their substrates also play a crucial role in the regulation of ES cell differentiation.  相似文献   

18.
An extracellular matrix microarray for probing cellular differentiation   总被引:2,自引:0,他引:2  
We present an extracellular matrix (ECM) microarray platform for the culture of patterned cells atop combinatorial matrix mixtures. This platform enables the study of differentiation in response to a multitude of microenvironments in parallel. The fabrication process required only access to a standard robotic DNA spotter, off-the-shelf materials and 1,000 times less protein than conventional means of investigating cell-ECM interactions. To demonstrate its utility, we applied this platform to study the effects of 32 different combinations of five extracellular matrix molecules (collagen I, collagen III, collagen IV, laminin and fibronectin) on cellular differentiation in two contexts: maintenance of primary rat hepatocyte phenotype indicated by intracellular albumin staining and differentiation of mouse embryonic stem (ES) cells toward an early hepatic fate, indicated by expression of a beta-galactosidase reporter fused to the fetal liver-specific gene, Ankrd17 (also known as gtar). Using this technique, we identified combinations of ECM that synergistically impacted both hepatocyte function and ES cell differentiation. This versatile technique can be easily adapted to other applications, as it is amenable to studying almost any insoluble microenvironmental cue in a combinatorial fashion and is compatible with several cell types.  相似文献   

19.
Murine embryonic stem (ES) cells can be maintained as stem cells in vitro only in the presence of feeder cells or a soluble factor produced by a number of cell lines. We have previously demonstrated that leukemia inhibitory factor (LIF) is the molecule which prevents ES cell differentiation in culture. In this report we demonstrate that recombinant LIF can substitute for feeder cells in maintaining the full developmental potential of ES cells. The totipotent D3 ES cell line, previously isolated and maintained on growth-arrested primary embryo fibroblasts, was transferred to media supplemented with 1000 U/ml (10 ng/ml) recombinant LIF. In the presence of LIF the ES cells were maintained for over 2 months as undifferentiated cells in the absence of any feeder cells. When injected into blastocysts the ES cells which had been maintained in LIF-supplemented media efficiently formed germ-line chimeras.  相似文献   

20.
Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号