首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-6-phosphate dehydrogenase (E. C.: 1.1.1.49) phenotypes and 6-phosphogluconate dehydrogenase (E. C.: 1.1.1.44) phenotypes were determined by starch-gel electrophoresis of red cell hemolysates of Galago crassicaudatus subspp., Propithecus verreauxi, Lemur spp., Hapalemur griseus, and Macaca mulatta. A single glucose-6-phosphate dehydrogenase (G6PD) phenotype was found in each species. A single 6-phosphogluconate dehydrogenase (6PGD) phenotype was found in Lemur spp., Hapalemur griseus, and Galago crassicaudatus argentatus. In a group of six Propithecus verreauxi, three 6PGD phenotypes, PGD A, PGD AB, and PGD B, were found. Three phenotypes, PGD A, PGD AB, and PGD B, were found in 38 G. c. crassicaudatus. The three phenotypes in each species are apparently the products of two codominant autosomal alleles, PGDA and PGDB. The frequency of PGDA in G. c. crassicaudatus is 0.263. A population of 260 free-ranging macaques displays a polymorphism at the 6PGD locus. Three phenotypes, PGD A, PGD AB, and PGD B, were found. These also appear to be controlled by two codominant autosomal alleles, PGDA and PGDB the frequency of PGDA = 0.913. Additional analysis of three well-defined troops within the macaque population indicated that there are no significant differences between the troops or within the population at the 6PGD locus.  相似文献   

2.
Sukhatme VP  Chan B 《FEBS letters》2012,586(16):2389-2395
We show that knockdown of 6-phosphogluconate dehydrogenase (6PGD) of the pentose phosphate pathway (PPP) inhibits growth of lung cancer cells by senescence induction. This inhibition is not due to a defect in the oxidative PPP per se. NADPH and ribose phosphate production are normal in 6PGD knockdown cells and shutdown of PPP by knockdown of glucose-6-phosphate dehydrogenase (G6PD) has little effect on cell growth. Moreover, 6PGD knockdown cells can proliferate when the PPP is bypassed by using fructose instead of glucose in medium. Significantly, G6PD knockdown rescues proliferation of cells lacking 6PGD, suggesting an accumulation of growth inhibitory glucose metabolics in cells lacking 6PGD. Therefore, 6PGD inhibition may provide a novel strategy to treat glycolyic tumors such as lung cancer.  相似文献   

3.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster.  相似文献   

4.
Glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) play an important function in various biochemical processes as they generate reducing power of the cell. Thus, metabolic reprogramming of reduced nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis is reported to be a vital step in cancer progression as well as in combinational therapeutic approaches. In this study, N‐benzoylindoles 9a‐ ‐ 9d , which form the main framework of many natural indole derivatives such as indomethacin and N‐benzoylindoylbarbituric acid, were synthesized through three easy and effective steps as an in vitro inhibitor effect of G6PD and 6PGD. The N‐benzoylindoles inhibited the enzymatic activity with IC50 in the range of 3.391505 μM for G6PD and 2.19–990 μM for 6PGD.  相似文献   

5.
Summary The phenomenon of dosage compensation in Drosophila melanogaster which consists in doubling of the activity of the X-chromosome genes in males as compared to those in females was studied.The specific activities of 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD) determined by the sex-linked structural genes Pgd and Zw respectively were studied in flies carrying duplications for different regions of the X-chromosome. The increase in dose of Pgd and Zw in females resulting from the addition of an extra X-chromosome or X-fragments leads to a proportional rise in the specific activities of 6PGD and G6PD. On the other had the addition to females of the X-chromosome carrying no Pgd gene or X-fragments lacking Pgd and Zw has no effect on the enzyme activities. Thus we failed to reveal in the X-chromosome any compensatory genes envisaged by Muller, which would repress sex-linked structural genes proportional to their dose.The 6PGD and G6PD levels in phenotypically male-like intersexes carrying two X-chromosomes and three autosome sets (2X3A) is 30% higher than in diploid (2X2A) or triploid (3X3A) females. However the specific activities of the enzymes in female-like intersexes are the same as in regular females. The levels of 6PGD and G6PD per one X-chromosome are 1.5–2.0 times higher in the intersexes than in the normal females and metafemales (3X2A). The results indicate that the level of expression of the X-chromosome is determined by the X:A ratio. It is suggested that the decreased X:A ratio in males is responsible for the hyperactivation of their X-chromosomes.  相似文献   

6.
Various inorganic and organic nitrogen sources were used to compare their effects on the lipogenesis and the activities of lipogenic enzymes (providing acetyl-CoA and donating NADPH) in gamma-linolenic acid-producing fungus Cunninghamella echinulata. Lipid accumulation was enhanced by organic nitrogen, among them the presence of corn-steep led to almost 40% oil in the biomass. While organic nitrogen increased activities of acetyl-CoA carboxylase (ACC) and malic enzyme (ME), ATP:citrate lyase (ACL) was rapidly enhanced by ammonium ion. The use of NaNO(3) resulted in high activities of glucose 6-phosphate dehydrogenase (GPD) and 6-phosphogluconate dehydrogenase (PGD). NADP-isocitrate dehydrogenase (NADP-ICD) was more active when the fungus utilized all inorganic N-compounds. The rise of nitrogen concentration in medium was accompanied with reduced lipid accumulation and a fall of ACL, ACC, and ME. In contrast, N-sufficient conditions favored biomass growth and elevated activities of GPD and PGD. Kinetic experiments also suggest that a significant portion of the required acetyl-CoA was being provided via ACL and ACC, and ME (probably coupled with GPD) channeled the NADPH into the fatty acid biosynthesis. The contribution of the lipogenic enzymes to metabolic pathways other than lipogenesis is also discussed.  相似文献   

7.
S E Broedel  R E Wolf 《Gene》1991,109(1):71-79
In most cyanobacteria, the only known pathway for oxidation of stored carbohydrate in the dark or under energy-limiting conditions is the hexose monophosphate shunt. To determine whether the increased use of the shunt under these conditions derives from an increase in the activity level of the respective enzymes, we measured the effect of growth phase during the growth of batch cultures of Synechococcus sp. strain PCC7942 on the specific activity of 6-phosphogluconate dehydrogenase (6PGD) and glucose 6-phosphate dehydrogenase. The specific activities were constant during the exponential growth phase of the culture, but they increased about fivefold during the transition into stationary phase. As an approach to determining the level of expression at which the growth-phase-dependent regulation of 6PGD level is exerted, we constructed operon and gene fusions between the gnd gene, which encodes 6PGD, and the Escherichia coli lacZ gene, which encodes beta-galactosidase (beta Gal). Strains harboring the fusions integrated into the cyanobacterial chromosome were prepared, and the growth-phase dependence of beta Gal level was determined. The specific activity of beta Gal in cultures of both types of fusion strains increased during the transition into stationary phase, indicating that the growth-phase-dependent regulation is on the gnd mRNA level. Characterization of the growth-phase-dependent induction of 6PGD in strains carrying differing amounts of DNA upstream from the gnd structural gene led to the localization of the promoter and the regulatory site on the restriction map of the gene, whose sequence has previously been determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were separated and partially purified from glucose-grown cells of Lactobacillus casei. The enzymes had similar pH optima, thermosensitivity and molecular weights. They had different net charges and their pI values were 5.38 and 4.52, respectively. Histidine, arginine, lysine and cysteine residues were essential for the activity of G6PD, and all the above amino acids with the exception of lysine were required for 6PGD activity. Mg2+ activated 6PGD up to 15 mM concentration, above which it was inhibitory. It had no effect on G6PD activity. G6PD was specific for NADP+, but 6PGD showed some activity with NAD+ as the cofactor, although it was essentially NADP(+)-preferring. Both the enzymes, were inhibited by NADPH. 6PGD was also inhibited by its product, ribulose 5-phosphate. ATP inhibited 6PGD only at subsaturating concentrations of NADP+. The inhibition was sigmoidal in the absence of Mg2+ and hyperbolic in its presence.  相似文献   

9.
By means of starch gel electrophoresis the polymorphism of the 6-phosphogluconate dehydrogenase (6PGD) has been found in cattle leucocytes. The phenotypes (A, AB and B) and allele frequencies ( 6PGD A= 0.425; 6PGD B= 0.575) are demonstrated in families of German Friesian cattle.  相似文献   

10.
6-Phosphogluconate dehydrogenase (6PGD) is the third enzyme in the oxidative pentose phosphate pathway (PPP). Recently, we reported that knockdown of 6PGD inhibited lung tumor growth in vitro and in a xenograft model in mice. In this study, we continued to examine the functional role of 6PGD in cancer. We show that 6PGD expression positively correlates with advancing stage of lung carcinoma. In search of functional signals related to 6PGD, we discovered that knockdown of 6PGD significantly inhibited phosphorylation of c-Met at tyrosine residues known to be critical for activity. This downregulation of c-Met phosphorylation correlated with inhibition of cell migration in vitro. Overexpression of a constitutively active c-Met specifically rescued the migration but not proliferation phenotype of 6PGD knockdown. Therefore, 6PGD appears to be required for efficient c-Met signaling and migration of tumor cells in vitro.  相似文献   

11.
Inheritance of 15 polymorphic isozymes was investigated in captive Microtus californicus. Eleven of the isozymes show patterns consistent with a Mendelian model of inheritance: glycerol-3-phosphate dehydrogenase (GPD), lactate dehydrogenases A and B (LDH-A and LDH-B), malic enzyme 2 (ME-2), isocitrate dehydrogenase 1 (ICD-1), phosphogluconate dehydrogenase (PGD), glutamate-oxaloacetate transaminase 1 (GOT-1) phosphoglucomutase 2 (PGM-2), leucine aminopeptidase (LAP), glucosephosphate isomerase (GPI), and esterase 2 (ES-2, from kidney). four of the isozymes show patterns that cannot be interpreted by a simple genetic model: esterases 1 and 4 (ES-1, ES-4, from hemolysate), esterase 3 (ES-3, from plasma), and protein 1 (PT-1). The following pairs of loci are assorting independently: LAP and PGD, LAP and PGM-2, GOT-1 and PGD, GOT-1 and GPD, LAP and GPD, GPD and PGD, GPI and PGD. Data from one test cross mating indicate that GPD and PGM-2 are loosely linked with recombination about 30%. Additional data are needed to confirm this relationship.This study was conducted while the first author was the recipient of an NIH Traineeship. The Departments of Genetics and Zoology provided financial support for the maintenance of the animal colony. This work was supported in part by an NIH-Biomed grant (3-S05-RR-07006-08S1) to W. Z. Lidicker.  相似文献   

12.
The aim of this study was to investigate whether nicotine affects 6-phosphogluconate dehydrogenase (6PGD) enzyme activity in some rat tissues, and to see the modulatory effects of vitamin E on this effect in vivo. In addition, the effects of nicotine and vitamin E on 6PGD activity were also tested in vitro. The groups were: nicotine [0.5 mg/kg/day, intraperitoneal (i.p.)]; nicotine + vitamin E [75 mg/kg/day, intragastric (i.g.)]; and control group (receiving only vehicles). There were eight rats per group and supplementation period was 3 weeks. The results of in vivo study showed that nicotine activated the muscle, lungs, and testicular 6PGD enzyme activity but had no effect on heart and liver 6PGD activity. Also, nicotine + vitamin E activated the muscle, testicle, and liver 6PGD enzyme activity, while this combination had no effect on heart, and lungs in vivo. When nicotine is administered with vitamin E the increase in 6PGD enzyme activity in muscle and testicles were lower. On the other hand the increase in 6PGD enzyme activity was eliminated by vitamin E in lungs, while 6PGD enzyme activity was increased by vitamin E, which was not affected by nicotine only. In vitro results correlated well with in vivo experimental results. Our results suggest that vitamin E may favourably increase 6PGD enzyme activity in liver in nicotine treated rats, while it has negligible effects on this enzyme activity in other tissues.  相似文献   

13.
This paper describes the physicochemical characteristics in partially purified enzyme on subjects with the Pd A, Pd AB, and Pd B variants of 6-phosphogluconic dehydrogenase (6PGD). For these studies, whole blood was purified about 225-fold using ion exchange chromatography on DEAE cellulose column and fractionation with ammonium sulfate. 6PGD emerges as a single peak between 0.01 m and 0.1 m phosphate buffer on the column and is precipitated in the 55–80% fraction of ammonium sulfate. This purified enzyme can be stored frozen for several months without appreciable loss of activity and contains no detectable activity of glucose 6-phosphate dehydrogenase and glutathione reductase. The three variants of partially purified 6PGD varied from each other in two respects. The transitional temperature is 47.8 C for Pd A, 45.4 C for Pd AB, and 41.1 C for Pd B. The K m for 6PGA is 30 m for Pd A, 21 m for Pd AB, and 15 mfor Pd B. These observations add further strength to the concept that the polymorphism in 6PGD represents alterations in either the configuration or structure of the protein molecule itself.Supported by grants from the Chicago Community Trust and the U.S. Public Health Service (Tl-AM-5186).  相似文献   

14.
Summary The molecular nature of lethal and semilethal mutations in the Pgd locus of D. melanogaster coding for 6-phosphogluconate dehydrogenase (6PGD) was studied. All the 11 mutations affect the structural gene of the Pgd locus: 3 semilethal mutations resulted in altered 6PGD molecules with decreased catalytic activities; the rest 8 lethals were null alleles characterized by mutant polypeptides capable of reacting with antisera against highly purified 6PGD.Null or low activity alleles for glucose-6-phosphate dehydrogenase induced by ethyl methanesulfonate were shown to be suppressors for the lethal mutations in the Pgd locus.A monocistronic type of organization of the Pgd locus is suggested taking into account the biochemical mechanism of suppression of the Pgd-lethals and their location in the structural gene coding for 6PGD.  相似文献   

15.
Iron is an indispensable element for vital activities in almost all living organisms. It is also a cofactor for many proteins, enzymes, and other essential complex biochemical processes. Therefore, iron trafficking is firmly regulated by Hepcidin (Hamp), which is regarded as the marker for iron accumulation. The disruption of iron homeostasis leads to oxidative stress that causes various human diseases, but this mechanism is still unclear. The aim of this study is to provide a better in vivo and in vitro understanding of how long‐term iron overload affects the gene expression and activities of some antioxidant enzymes, such as glucose 6‐phosphate dehydrogenase (G6PD), 6‐phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) in the spleen. The findings of this study show that iron overload reduces the gene expression of G6pd, 6pgd, and Gr, but its actual effect was on the protein level.  相似文献   

16.
Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model.  相似文献   

17.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

18.
Lipid synthesis from acetate-1-(14)C by rat skin was inhibited 44-56% by 2.5 x 10(-4) m dehydroepiandrosterone (DHA) in vitro with or without addition of glucose in the incubation medium. This inhibition affected all the lipid fractions examined (hydrocarbons, sterols, sterol esters, tri-, di- and monoglycerides, fatty acids, and polar lipids) and could be reversed by NADPH. DHA also inhibited lipid synthesis from glucose-U-(14)C and the formation of (14)CO(2) from glucose-1-(14)C, indicating interference with pentose cycle activity. Experiments with the 105,000 g supernatant fluid of rat skin homogenates demonstrated considerable activities of malic enzyme (ME) (12.6 nmoles of NADPH generated per min per mg of protein), of glucose-6-phosphate dehydrogenase (G6PD), and of 6-phosphogluconate dehydrogenase (6PGD) (17.5 nmoles of NADPH generated per min per mg of protein). G6PD was inhibited 98% by 2.5 x 10(-4) m dehydroepiandrosterone, while 6PGD and ME were not affected. It can be estimated from these data that the pentose cycle may contribute 41-57% of the NADPH needed for lipid synthesis in rat skin; the remainder of the necessary NADPH is presumably supplied by malic enzyme.  相似文献   

19.
The pentose phosphate cycle is considered as a major source of NADPH and pentose needed for nucleic acid biosynthesis. 6-Phosphogluconate dehydrogenase (6PGD), an enzyme participating in this cycle, catalyzes the oxidative decarboxylation of 6PGD to ribulose 5-phosphate with the subsequent release of CO2 and the reduction of NADP. We have determined the amino acid sequence of 6PGD of Bactrocera oleae and constructed a three-dimensional model based on the homologous known sheep structure. In a comparative study of 6PGD sequences from numerous species, all the conserved and variable regions of the enzyme were analyzed and the regions of functional importance were localized, in an attempt promoted also by the direct involvement of the enzyme in various human diseases. Thus, analysis of amino acid variability of 37 6PGD sequences revealed that all regions important for the catalytic activity, such as those forming the substrate and coenzyme binding sites, are highly conserved in all species examined. Moreover, several amino acid residues responsible for substrate and coenzyme specificity were also found to be identical in all species examined. The higher percentage of protein divergence is observed at two regions that accumulate mutations, located at the distant parts of the two domains of the enzyme with respect to their interface. These peripheral regions of nonfunctional importance are highly variable and are predicted as antigenic, thus reflecting possible regions for antibody recognition. Furthermore, locating the differences between diptera 6PGD sequences on the three-dimensional model suggests probable positions of different amino acid residues appearing at B. oleae fast, intermediate, and slow allozymic variants. Abbreviations used: 6Pgd, 6-Phosphogluconate dehydrogenase gene; 6PGD, 6-Phosphogluconate dehydrogenase enzyme; NADPH, nicotinamide adenine dinucleotide phosphate; ADP, adenine dinucleotide phosphate; TNBS, 2,4,6 trinitrobenzensulfonic acid.  相似文献   

20.
Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号