首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Acoustic interactions are important for understanding intra‐ and interspecific communication in songbird communities from the viewpoint of soundscape ecology. It has been suggested that birds may divide up sound space to increase communication efficiency in such a manner that they tend to avoid overlap with other birds when they sing. We are interested in clarifying the dynamics underlying the process as an example of complex systems based on short‐term behavioral plasticity. However, it is very problematic to manually collect spatiotemporal patterns of acoustic events in natural habitats using data derived from a standard single‐channel recording of several species singing simultaneously. Our purpose here was to investigate fine‐scale spatiotemporal acoustic interactions of the great reed warbler. We surveyed spatial and temporal patterns of several vocalizing color‐banded great reed warblers (Acrocephalus arundinaceus) using an open‐source software for robot audition HARK (Honda Research Institute Japan Audition for Robots with Kyoto University) and three new 16‐channel, stand‐alone, and water‐resistant microphone arrays, named DACHO spread out in the bird's habitat. We first show that our system estimated the location of two color‐banded individuals’ song posts with mean error distance of 5.5 ± 4.5 m from the location of observed song posts. We then evaluated the temporal localization accuracy of the songs by comparing the duration of localized songs around the song posts with those annotated by human observers, with an accuracy score of average 0.89 for one bird that stayed at one song post. We further found significant temporal overlap avoidance and an asymmetric relationship between songs of the two singing individuals, using transfer entropy. We believe that our system and analytical approach contribute to a better understanding of fine‐scale acoustic interactions in time and space in bird communities.  相似文献   

3.
Geographic variation in microsatellite allele frequencies was assessed at nine sites in two regional vocal dialects of the parrot Amazona auropalliata (yellow-naped amazon) to test for correspondence between dialects and population structure. There was no relationship between the genetic distances between individuals and their dialect membership. High rates of gene flow were estimated between vocal dialects based on genetic differentiation. In addition, 5.5% of pairs of individuals compared across the dialect boundary were estimated to be related at the level of half siblings, indicating that dispersal is ongoing. The number of effective migrants per generation between dialects estimated with the microsatellite data was roughly one-seventh the number estimated with mitochondrial control region sequence data from the same individuals, suggesting that gene flow may be female-biased. Together, these results suggest that the observed mosaic pattern of geographic variation in vocalizations is maintained by learning of local call types by immigrant birds after dispersal. We found no evidence that ongoing habitat fragmentation has contributed to cryptic population structure.  相似文献   

4.
In many species genes move over limited distances, such that genetic differences among populations or individuals are expected to increase as a function of geographical distance. In other species, however, genes may move any distance over a single generation time, such that no increase of genetic differences is expected to occur with distance. Patterns of gene dispersal have been assessed typically using this theoretical property. In this study, this classical approach based on a Mantel test was compared to a new method using individual assignment to reveal contrasts in dispersal patterns between 15 populations of brook charr Salvelinus fontinalis and 10 populations of Atlantic salmon Salmo salar sampled in eastern Canada, where both species co-occur naturally. Based on the Mantel test, we found evidence for neither an increase of genetic differences with distance in either species nor a significant contrast between them. The individual-based method, in contrast, revealed that individual assignment in both species was non random, being significantly biased toward geographically proximate locations. Furthermore, brook charr were on average assigned to a closer river than were salmon, according to a priori expectations based on the dispersal behaviour of the two species. We thus propose that individual assignment methods might be a promising and more powerful alternative to Mantel tests when isolation by distance cannot be postulated a priori.  相似文献   

5.
Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.  相似文献   

6.
We carried out DNA fingerprinting on 553 young (130 broods)great reed warblers (Acrocephalus arundnaceus) in 1987–1991.In the study population, where 40% of the males become polygynous,there was a low frequency of extrapair fertilizations (EPF).When data from all five years were pooled, 3.1% of the youngwere sired by extrapair males (EPF-males) and 5.4% of the broodscontained extrapair young. We found no cases of extrapair maternity;young with 6–17 mismatched DNA bands (n= 17) had highband sharing with their putative mothers (range = 0.52–0.72)but low band sharing with their putative fathers (range = 0.24–0.40).In broods exposed to EPF, on average 53% of the young were siredby EPF-males. We found the genetic father to each of the illegitimateyoung. In all cases the same EPF-male sired all extrapair youngin a brood. Broods containing EPF-young tended to be initiatedlate during the breeding season. Breeding attempts were ratherevenly distributed over two months, thus this breeding asynchronywould have facilitated EPFs. There was no difference in EPFfrequency between broods where the pair males had left theirfemales unguarded during parts of their fertile periods andbroods where males guarded throughout the fertile periods. Nestswith extrapair young had significantly shorter mean distanceto the closest male neighbor and more male neighbors within100 m than nests without extrapair young. We found no indicationthat females engaged in EPF to get parental care from the EPF-males,or because they were forced to copulate with extrapair males.The low frequency of EPF suggested that females did not seekgenetic diversity to their brood. We cannot rule out the possibilitythat females engaged in EPF to insure fertility. However, datasupporting this hypothesis were weak. Instead, our data supportthe conclusion that females engaged in EPF to increase the geneticquality of their offspring, and that females may have used malesong repertoire size as a cue when choosing EPF partners.  相似文献   

7.
1. We investigated the causes of natal dispersal in four Spanish areas where 35 breeding groups of the polygynous great bustard Otis tarda were monitored intensively. A total of 392 juveniles were radio-tracked between 1991 and 2006 by ground and via aeroplane to avoid potential biases derived from the non-detection of long-distance dispersers. 2. We explored 10 explanatory variables that were related to individual phenotypic features, habitat and conspecific traits in terms of group size and breeding performance, and spatial distribution of available breeding groups. Probability of group change and natal dispersal distances were investigated separately through multifactorial analyses. 3. Natal dispersal occurred in 47.8% of the birds and median natal dispersal distance of dispersers was 18.1 km (range 4.97-178.42 km). Sex largely determined the dispersal probability, with 75.6% of males being dispersers and 80.0% of females being philopatric, in contrast to the general pattern of female-biased dispersal found in most avian species. 4. Both the frequency of natal dispersal and dispersal distances were affected by the spatial distribution of breeding groups. More isolated groups showed a higher proportion of philopatric individuals, the effect being more evident in males than in females. This implies a reduction in gene flow in fragmented populations, as most genetic exchange is achieved through male dispersal. Additionally, dispersers hatched in more isolated groups tended to exhibit longer dispersal distances, which increases the associated energetic costs and mortality risks. 5. The dispersal decision was influenced by the number of conspecifics in the natal group. The individual probability of natal dispersal was related inversely to the size of the natal group, which supports the balanced dispersal model and the conspecific attraction hypothesis. 6. Overall, our results provide a good example of phenotypic plasticity and reinforce the current view that dispersal is an evolutionary complex trait conditioned by the interaction of individual, social and environmental causes that vary between individuals and populations.  相似文献   

8.
Amplified fragment length polymorphisms (AFLP) are dominant markers frequently used to build linkage maps where heterozygosity could be inferred by a backcross breeding strategy. In the present study, we describe the utilization of an unmanipulated great reed warbler, Acrocephalus arundinaceus pedigree to infer heterozygous genotypes of AFLP markers in order to map these markers to a partial linkage map previously based on microsatellites. In total, 50 of the 83 autosomal AFLPs (60%) and 4 of 5 Z-linked AFLPs (80%) were mapped. For each marker, on average, 88% of the expected number of heterozygote parents was detected. The likelihood of map assignment was to a large extent due to the number and density of microsatellite markers already in the map. The 'parsimonious linkage map', that is the map based on the most parsimonious location of all significantly linked markers, consisted of 21 autosomal linkage groups with 2 to 15 markers and had a total map size of 552 cM in males and 858 cM in females. The Z-chromosome linkage group with 12 markers had a size of 155 cM. The autosomal 'framework linkage map', that is the map based only on markers with an unambiguous position, had a total size of 237 cM in males and 440 cM in females, respectively. The inclusion of AFLPs enlarged the previous map substantially (e.g. the autosomal parsimonious linkage map became 441 cM and 621 cM larger for male and female recombination, respectively). The probability that an AFLP became mapped increased with increasing level of heterozygosity, whereas the probability of mapping into a framework position increased with both heterozygosity and number of genotyped individuals. Our results suggest that AFLP provides a fast and inexpensive means of enlarging genetic maps already composed of markers with high polymorphism, also in wild populations with unmanipulated pedigrees.  相似文献   

9.
River otters (Lontra canadensis) were extirpated from much of their historic distribution because of exposure to pollution and urbanization, resulting in expansive reintroduction programmes that continue today for this and other species of otters worldwide. Bioaccumulation of toxins negatively affects fecundity among mustelids, but high vagility and different dispersal distances between genders may permit otter populations to recover from extirpation caused by localized environmental pollution. Without understanding the influence of factors such as social structure and sex-biased dispersal on genetic variation and gene flow among populations, effects of local extirpation and the potential for natural recolonization (i.e. the need for translocations) cannot be assessed. We studied gene flow among seven study areas for river otters (n = 110 otters) inhabiting marine environments in Prince William Sound, Alaska, USA. Using nine DNA microsatellite markers and assignment tests, we calculated immigration rates and dispersal distances and tested for isolation by distance. In addition, we radiotracked 55 individuals in three areas to determine characteristics of dispersal. Gender differences in sociality and spatial relationships resulted in different dispersal distances. Male river otters had greater gene flow among close populations (within 16-30 km) mostly via breeding dispersal, but both genders exhibited an equal, low probability of natal dispersal; and some females dispersed 60-90 km. These data, obtained in a coastal environment without anthropogenic barriers to dispersal (e.g. habitat fragmentation or urbanization), may serve as baseline data for predicting dispersal under optimal conditions. Our data may indicate that natural recolonization of coastal river otters following local extirpation could be a slow process because of low dispersal among females, and recolonization may be substantially delayed unless viable populations occurred nearby. Because of significant isolation by distance for male otters and low gene flow for females, translocations should be undertaken with caution to help preserve genetic diversity in this species.  相似文献   

10.
KAREN J. NUTT 《Molecular ecology》2008,17(15):3541-3556
Knowledge of the dispersal status of group members is important to understanding how sociality may have evolved within a species. I assessed the effectiveness of four techniques for elucidating dispersal behaviour in a rock-dwelling rodent ( Ctenodactylus gundi ) with small group sizes (2–10 animals): genetic parentage assignment, haplotype data and kinship analyses, assignment testing, and F -statistics. The first two methods provided the greatest insight into gundi dispersal behaviour. Assignment testing and F -statistics proved of limited use for elucidating fine-scale dispersal, but could detect large-scale patterns despite low sex-biased dispersal intensity (1.9 : 1) because of moderate genetic differentiation among groups ( F ST = 0.10). Findings are discussed in light of current dispersal theory. In general, gundi dispersal is plastic, and seems to be dependent on body weight (for males), group composition, and scale of analysis (total dispersal events recorded within the population were almost twice the immigration rate into the population). Most groups were comprised of a single matriline and one immigrant male. Immigrant rather than philopatric males bred with group females. Dispersal among groups was male-biased, but dispersal or philopatry could occur by either sex. During a drought, both sexes delayed dispersal and cooperative social units formed. Whether such behaviour resulted directly from the drought or not remains unclear, however, since comparative information was not available from nondrought years. Combining fine-scale analyses with information on large-scale patterns provided substantial insight into gundi dispersal behaviour despite the limited movement of animals during a drought, and may prove useful for elucidating dispersal behaviour in other social animals.  相似文献   

11.
C. M. HERRERA 《Molecular ecology》2009,18(22):4533-4535
In two studies on mating patterns and spatial components of pollen and seed dispersal of Prunus mahaleb based on parentage analysis, García et al. (2005, 2007) depicted their 196 focal trees as a spatially isolated population where all reproductive trees had been genotyped. Additional distributional data for P. mahaleb trees in their study area, however, revealed that García and colleagues’ depiction of their study system bears little resemblance to reality. The trees these authors studied did not form a discrete, geographically isolated population. Around 300 ungenotyped reproductive trees occurred within the 1.5‐km distributional gap to the nearest population proclaimed by García and colleagues. Since exhaustive sampling of potential parental genotypes is essential in parentage analyses, the occurrence of a large number of ungenotyped trees in the immediate neighbourhood of focal trees can severely affect the main conclusions of García et al. (2005, 2007) as well as of several related publications on gene dispersal and mating patterns of P. mahaleb conducted on the same trees and relying on the same false premises of spatial isolation and exhaustive sampling.  相似文献   

12.
The environmental and/or life history factors affecting genetic exchange in marine species with potential for high dispersal are of great interest, not only from an evolutionary standpoint but also with regard to effective management. Previous genetic studies have demonstrated substantial differentiation among populations of the Patagonian toothfish around the Southern Ocean, indicating breakdown of gene flow across large distances between inhabited shelf areas. The present study examined genetic structuring through analysis of microsatellite loci and restriction fragment length polymorphism (RFLP) of the mitochondrial ND2 gene and control region of the toothfish population in the SW Atlantic, allowing examination of the relative effects of the Antarctic Polar Front (APF), deep-water troughs and distance between sites. Mitochondrial DNA (mtDNA) data indicated a sharp genetic division between the Patagonian Shelf/North Scotia Ridge and the Shag Rocks/South Georgia samples, whereas microsatellite data showed much less distinct structuring and an intermediate position of the North Scotia Ridge samples. We suggest these data indicate that the APF, as a barrier to larval dispersal, is the major inhibitor of genetic exchange between toothfish populations, with deep-water troughs and distance between sites contributing to genetic differentiation by inhibiting migration of relatively sedentary adults. We also suggest that differences between mtDNA and nuclear DNA population patterns may reflect either genome population size effects or (putative) male-biased dispersal.  相似文献   

13.
Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent–offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent–offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome‐wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close‐set, high‐rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent–offspring dispersal and estimated neighbourhood area (91 m), median parent–offspring dispersal distance (38 m) and oviposition dispersal radius within a gonotrophic cycle (25 m). We also analysed genetic structure using distance‐based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance. [Correction added on 09 October 2020, after first online publication: 129 m corrected to 91 m; 75 m to 38 m; 36 m to 25 m.]  相似文献   

14.
Abstract. The mutualistic interaction of figs with their species-specific wasp pollinators and the role of figs as 'keystone' plant resources in tropical communities has received substantial attention from both plant and animal ecologists. Despite this focus on the reproductive biology of figs, the minute size of the wasps has effectively precluded our ability to monitor patterns of wasp dispersal and fig mating relationships in natural forest habitats. In this paper we use genetic markers and genealogy reconstruction techniques to examine the breeding structure of populations of four strangler fig species occurring in central Panama. The natural history of figs facilitates the genetic analysis of full-sib progeny arrays from which the genotypes of successful pollen donors can be reconstructed precisely. Paternity reconstruction in the four study species reveals that individual flowering trees may routinely receive pollen from numerous donors despite characteristically low densities of co-flowering individuals. These data indicate not only that breeding populations of these figs are larger than the minimum critical sizes predicted to be necessary to support populations of their species-specific pollinators, but are more extensive in size and area than has been described for any plant species yet examined. Further, the fig wasps are shown to be efficient agents of long-distance dispersal, routinely moving up to 10 km between flowering trees. In accord with the potential for substantial long-distance gene flow and large effective population sizes, ten of eleven species of Panamanian figs assayed were found to maintain exceptionally high levels of genetic variation within their populations. Combined with other reports of occasional long-distance dispersal, the results of this study suggest that fig wasps may be more effective at colonizing isolated fig populations than previously thought.  相似文献   

15.
The oriental fruit moth (OFM) Grapholita molesta is one of the most destructive orchard pests. Assumed to be native to China, the moth is now distributed throughout the world. However, the evolutionary history of this moth in its native range remains unknown. In this study, we explored the population genetic structure, dispersal routes and demographic history of the OFM in China and South Korea based on mitochondrial genes and microsatellite loci. The Mantel test indicated a significant correlation between genetic distance and geographical distance in the populations. Bayesian analysis of population genetic structure (baps ) identified four nested clusters, while the geneland analysis inferred five genetic groups with spatial discontinuities. Based on the approximate Bayesian computation approach, we found that the OFM was originated from southern China near the Shilin area of Yunnan Province. The early divergence and dispersal of this moth was dated to the Penultimate glaciation of Pleistocene. Further dispersal from southern to northern region of China occurred before the last glacial maximum, while the expansion of population size in the derived populations in northern region of China occurred after the last glacial maximum. Our results indicated that the current distribution and structure of the OFM were complicatedly influenced by climatic and geological events and human activities of cultivation and wide dissemination of peach in ancient China. We provide an example on revealing the origin and dispersal history of an agricultural pest insect in its native range as well as the underlying factors.  相似文献   

16.
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.  相似文献   

17.
18.
Landscape genetics is an important framework for investigating the influence of spatial pattern on ecological process. Nevertheless, the standard analytic frameworks in landscape genetics have difficulty evaluating hypotheses about spatial processes in dynamic landscapes. We use a predictive hypothesis-driven approach to quantify the relative contribution of historic and contemporary processes to genetic connectivity. By confronting genetic data with models of historic and contemporary landscapes, we identify dispersal processes operating in naturally heterogeneous and human-altered systems. We demonstrate the approach using a case study of microsatellite polymorphism and indirect estimates of gene flow for a rainforest bird, the logrunner ( Orthonyx temminckii ). Of particular interest was how much information in the genetic data was attributable to processes occurring in the reconstructed historic landscape and contemporary human-modified landscape. A linear mixed model was used to estimate appropriate sampling variance from nonindependent data and information-theoretic model selection provided strength of evidence for alternative hypotheses. The contemporary landscape explained slightly more information in the genetic differentiation data than the historic landscape, and there was considerable evidence for a temporal shift in dispersal pattern. In contrast, migration rates estimated from genealogical information were primarily influenced by contemporary landscape change. We discovered that landscape heterogeneity facilitated gene flow before European settlement, but contemporary deforestation is rapidly becoming the most important barrier to logrunner dispersal.  相似文献   

19.
Kim KS  Sappington TW 《Genetica》2006,127(1-3):143-161
The boll weevil (Anthonomus grandis Boheman) is an insect pest of cotton that underwent a well-documented range expansion across the southeastern U.S. from Mexico beginning about 110 years ago. Eleven microsatellite loci were surveyed to infer the magnitude and pattern of genetic differentiation among boll weevil populations from 18 locations across eight U.S. states and northeast Mexico. Estimates of genetic diversity (allelic diversity and heterozygosity) were greater in Southern than Northern populations, and were greater in the west than the east among Northern populations. Boll weevil populations were genetically structured as a whole across the geographic range sampled, with a global F ST of 0.241. South-central populations exhibit classic isolation by distance, but evidence suggests that populations within the Eastern and Western regions have not yet reached genetic equilibrium. Gene flow appears to be relatively high among populations within the Eastern region. Population assignment data and estimates of gene flow indicate that migration between locations separated by < 300 km is frequent. The database of microsatellite genotypes generated in this study now makes it possible, through population assignment techniques, to identify the most likely geographic source of a boll weevil reintroduced to an eradication zone, which will help action agencies decide the most appropriate mitigation response. Kyung Seok Kim - Formerly: USDA-ARS, Areawide Pest Management Research Unit, 2771 F & B Rd., College Station,TX 77845, USA.  相似文献   

20.
With the emergence of landscape genetics, the basic assumptions and predictions of classical population genetic theories are being re‐evaluated to account for more complex spatial and temporal dynamics. Within the last decade, there has been an exponential increase in such landscape genetic studies ( Holderegger & Wagner 2006 ; Storfer et al. 2010 ), and both methodology and underlying concepts of the field are under rapid and constant development. A number of major innovations and a high level of originality are required to fully merge existing population genetic theory with landscape ecology and to develop novel statistical approaches for measuring and predicting genetic patterns. The importance of simulation studies for this specific research has been emphasized in a number of recent articles (e.g., Balkenhol et al. 2009a ; Epperson et al. 2010 ). Indeed, many of the major questions in landscape genetics require the development and application of sophisticated simulation tools to explore gene flow, genetic drift, mutation and natural selection in landscapes with a wide range of spatial and temporal complexities. In this issue, Jaquiéry et al. (2011) provide an excellent example of such a simulation study for landscape genetics. Using a metapopulation simulation design and a novel ‘scale of phenomena’ approach, Jaquiéry et al. (2011) demonstrate the utility and limitations of genetic distances for inferring landscape effects on effective dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号