首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melittin is a cytolytic peptide whose biological activity is lost upon binding to a six-residue peptide, Ac-IVIFDC-NH(2), with which it forms a highly insoluble complex. As a result, the structural analysis of the interaction between the two peptides is difficult. Solid-state NMR spectroscopy was used to study the interaction between melittin and the peptide inhibitor. Location of the binding site in the melittin-inhibitor complex was determined using lanthanide ions, which quench NMR resonances from molecular sites that are in close proximity to the unique ion binding site. Our results indicated that the inhibitor binding site in melittin is near Leu13, Leu16 and Ile17, but not near Leu6 or Val8. On the basis of these data we propose that the inhibitor binds to melittin in the vicinity of Ala15 to Trp19 and prevents insertion of melittin into cell membranes by disrupting the helical structure. Supporting evidence for this model was produced by determining the distance, using rotational resonance NMR, between the [1-(13)C] of Leu13 in melittin and the [3-(13)C] of Phe4 in the inhibitor.  相似文献   

2.
Vasonatrin peptide (VNP) is an active cardiovascular factor and a novel synthetic natriuretic peptide with unknown natriuretic peptide receptor (NPR) binding properties. We set out to design binding models of NPRA/VNP and NPRB/VNP, and then assessed their recognition and binding affinities using molecular dynamics. Molecular dynamics analysis indicated decreases in the values of Van der Waals, electrostatic energy and potential energy of NPRB/VNP compared to NPRA/VNP. There was a 25% increase in H-bond formation between VNP and NPRB. The cGMP stimulated by VNP in NPRB-transfected HEK-293 cells was 11-fold higher than that of NPRA. We therefore demonstrated that VNP binds with both NPRA and NPRB, but with a preference for NPRB.  相似文献   

3.
Dong M  Le A  Te JA  Pinon DI  Bordner AJ  Miller LJ 《Biochemistry》2011,50(14):2983-2993
Secretin is a linear 27-residue peptide hormone that stimulates pancreatic and biliary ductular bicarbonate and water secretion by acting at its family B G protein-coupled receptor. While, like other family members, the carboxyl-terminal region of secretin is most important for high affinity binding and its amino-terminal region is most important for receptor selectivity and receptor activation, determinants for these activities are distributed throughout the entire length of this peptide. In this work, we have systematically investigated changing each residue within secretin to alanine and evaluating the impact on receptor binding and biological activity. The residues most critical for receptor binding were His1, Asp3, Gly4, Phe6, Thr7, Ser8, Leu10, Asp15, Leu19, and Leu23. The residues most critical for biological activity included His1, Gly4, Thr7, Ser8, Glu9, Leu10, Leu19, Leu22, and Leu23, with Asp3, Phe6, Ser11, Leu13, Asp15, Leu26, and Val27 also contributing. While the importance of residues in positions analogous to His1, Asp3, Phe6, Thr7, and Leu23 is conserved for several closely related members of this family, Leu19 is uniquely important for secretin. We, therefore, have further studied this residue by molecular modeling and molecular dynamics simulations. Indeed, the molecular dynamics simulations showed that mutation of Leu19 to alanine was destabilizing, with this effect greater than that observed for the analogous position in the other close family members. This could reflect reduced contact with the receptor or an increase in the solvent-accessible surface area of the hydrophobic residues in the carboxyl terminus of secretin as bound to its receptor.  相似文献   

4.
We have shown previously (Rondeau, J.-J., McNicoll, N., Gagnon, J., Bouchard, N., Ong, H., and De Léan, A. (1995) Biochemistry 34, 2130-2136) that atrial natriuretic peptide (ANP) stabilizes a dimeric form of the natriuretic peptide receptor A (NPRA) by simultaneously interacting with both receptor subunits. However, the first crystallographic study of unliganded NPRA extracellular domain documented a V-shaped dimer involving a membrane-proximal dimer interface and separate binding sites for ANP on each monomer. We explored the possibility of an alternative A-shaped dimer involving a membrane-distal dimer interface by substituting an unpaired solvent-exposed cysteine for Trp(74) in the amino-terminal lobe of full-length NPRA. The predicted spacing between Trp(74) from both subunits drastically differs, depending on whether the V-shaped (84 A) or the A-shaped (8 A) dimer model is considered. In contrast with the expected results for the reported V-shaped dimer, the NPRA(W74C) mutant was constitutively covalently dimeric. Also, the subunits spontaneously reassociated following transient disulfide reduction by dithiothreitol and reoxidation. However, ANP could neither bind to nor activate NPRA(W74C). Permanent disulfide opening by reduction with dithiothreitol and alkylation with N-ethylmaleimide rescued ANP binding to NPRA(W74C). The NPRA mutant could be maintained as a covalent dimer while preserving its function by crosslinking with the bifunctional alkylating agent phenylenedimaleimides (PDM), the ortho-substituted oPDM being more efficient than mPDM or pPDM. These results indicate that the membrane-distal lobe of the NPRAM extracellular domains are dynamically interfacing in the unliganded state and that ANP binding stabilizes the receptor dimer with more stringent spacing at the dimer interface.  相似文献   

5.
Arterial distensibility, assessed by the pulse-wave velocity (PWV), is an independent predictor of cardiovascular risk. We investigated whether natriuretic peptides, acting locally, modify conduit artery distensibility in vivo. All studies were conducted in anesthetized sheep (n = 18) by using a validated ovine hindlimb model. In brief, the PWV was calculated, with the use of the foot-to-foot methodology, from two pressure waveforms recorded simultaneously with a high-fidelity dual pressure-sensing catheter placed in the common iliac artery. Drugs were infused either proximally, via the catheter to perfuse the segment of artery under study, or distally, via the sheath to control for any reflex changes in flow or sympathetic activation. First, the effects of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and c-type natriuretic peptide (CNP) were studied. Second, the role of endogenous ANP was investigated by infusing the natriuretic peptide receptor type A (NPRA)-selective receptor antagonist A71915. Third, A71915 was coinfused with ANP. Fourth, the NPRC-selective agonist cANF was infused. Infusion of CNP or des-[Gln18Ser19Gly20Leu21Gly22]-ANF-(4-23)-NH2 (cANF) had no effect on iliac PWV. However, infusion of ANP, and to a lesser degree BNP, resulted in a reduction in PWV (-9%; P < 0.01 and -6%; P < 0.05, respectively). A71915 increased iliac PWV from 2.97 +/- 0.13 to 3.06 +/- 0.13 m/s; P < 0.01. Coinfusion of A71915 with ANP completely abolished the effects of ANP (P < 0.01). Importantly, ANP-BNP infusion via the sheath did not alter PWV. In conclusion, ANP, and to a lesser extent BNP, modify large artery distensibility via the NPRA receptor. Neither CNP nor cANF altered PWV, suggesting that the NPRB and NPRC receptors do not acutely influence distensibility in vivo.  相似文献   

6.
为了研究胰岛素受体结合部位的结构和功能,设计并用固相方法合成了3个六肽.在浓度大于1×103nmol/L时,cyclo(Phe-Phe-Val-Leu-Tyr-Gly)具有明显的胰岛素受体结合活力;H-Phe-Phe-Val-Leu-Tyr-Gly-OH的这一活力则不明显;而H-Gly-Glu-Arg-Gly-Phe-Phe-OH则增强胰岛素和其受体的亲和性.然而,它们都没有体内生物活性.这表明:环六肽部分模拟了胰岛素受体结合部位的空间构象;胰岛素受体结合部位的疏水性和其中的B23Gly-B24Phe-B25Phe对胰岛素和其受体的结合起重要作用.  相似文献   

7.
Circulating natriuretic peptides such as atrial natriuretic peptide (ANP) counterbalance the effects of hypertension and inhibit cardiac hypertrophy by activating cGMP-dependent protein kinase (PKG). Natriuretic peptide binding to type I receptors (NPRA and NPRB) activates their intrinsic guanylyl cyclase activity, resulting in a rapid increase in cytosolic cGMP that subsequently activates PKG. Phosphorylation of the receptor by an unknown serine/threonine kinase is required before ligand binding can activate the cyclase. While searching for downstream PKG partners using a yeast two-hybrid screen of a human heart cDNA library, we unexpectedly found an upstream association with NPRA. PKG is a serine/threonine kinase capable of phosphorylating NPRA in vitro; however, regulation of NPRA by PKG has not been previously reported. Here we show that PKG is recruited to the plasma membrane following ANP treatment, an effect that can be blocked by pharmacological inhibition of PKG activation. Furthermore, PKG participates in a ligand-dependent gain-of-function loop that significantly increases the intrinsic cyclase activity of the receptor. PKG translocation is ANP-dependent but not nitric oxide-dependent. Our results suggest that anchoring of PKG to NPRA is a key event after ligand binding that determines distal effects. As such, the NPRA-PKG association may represent a novel mechanism for compartmentation of cGMP-mediated signaling and regulation of receptor sensitivity.  相似文献   

8.
Garg R  Pandey KN 《Peptides》2005,26(6):1009-1023
  相似文献   

9.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

10.
Porcine elastase II (EC 3.4.21.-), a pancreatic proteinase with elastolytic activity, hydrolyses the oxidized beta-chain of insulin with major cleavages occurring at Leu17-Val18, Phe24-Phe25, Phe25-Tyr26 and Tyr26-Thr27. Canine leucocytic elastase splits the same substrate with major sites at Val12-Glu13 and Val18-Cys19 O3H. This indicates similarity of elastase II to chymotrypsins (EC 3.4.21.1 or 3.4.21.2) and of dog leucocyte enzyme to human granulocyte elastase and porcine pancreatic elastase I (EC 3.4.21.11).  相似文献   

11.
Two Nalpha-benzophenone-substituted photoprobes, derived from the high affinity NPR-A chimeric agonist [N, C, rANP(1-28)]pBNP32 (pBNP1) were assembled by solid-phase peptide synthesis. [Nalpha-p-benzoylbenzoyl, Tyr2]pBNP1 (probe A), and [Nalpha-p-benzoylbenzoyl, Tyr18]pBNP1 (probe B) were synthesized and their affinity was tested on bovine zona glomerulosa membrane preparations. Both were found to exert ANP-type high affinities (Kd = 20 pM) with Kd of 10 pM and 30 pM for probe A, and probe B, respectively. Photolabeling of NPR-A with both analogs cross-linked specifically the 130 kDa monomeric NPR-A. The maximal irreversible ligand incorporations were estimated at 18% and 41% for probe A, and probe B, respectively. These results show that the N-terminus of the chimeric compound can be acylated with a large chemical function, such as the benzophenone moiety, without loosing its affinity for the NPR-A receptor. Furthermore, Leu2 or Leu18 can be substituted with tyrosine without disturbing the binding capacity of the ligand. Finally, it appears that the pBNP1 N-terminus is close to the receptor structure as irreversible incorporation is observed after photolabeling.  相似文献   

12.
Pandey KN 《The FEBS journal》2011,278(11):1792-1807
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.  相似文献   

13.
R Simantov  H Snyder 《Life sciences》1976,18(8):781-787
The ability of bovine brain extracts to compete in a selective fashion for opiate receptor binding is attributable to a small peptide. The substance has been purified to homogeneity and identified as comprising two penta-peptides HTyrGlyGlyPheLeuOH (Leucine-enkephalin) and HTyrGlyGlyPheMetOH (methionine enkephalin). Bovine brain contains 4 times as much leucine-enkephalin as methionine-enkephalin in contrast to pig brain in which these ratios are reversed. Competition for opiate receptor binding by leucine-enkephalin is reduced more by sodium and enhanced more by manganese than is the case for methionine-enkephalin, suggesting that leucine-enkephalin may be a “purer” agonist than methionine-enkephalin.  相似文献   

14.
Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.  相似文献   

15.
A new simple fast and reproducible purification procedure for the proteinase from rat liver mitochondria has been worked out. The specificity of cleavage of peptide bonds in glucagon, oxidized A and B chains of insulin and yeast proteinase B inhibitor by the proteinase of the inner mitochondrial membrane has been studied. The proteinase hydrolyzed three peptide bonds in glucagon, Tyr (13) - Leu (14), Trp (25) - Leu (26) and Phe (22) - Val (23) (minor cleavage site); none in the insulin A chain; one in the B chain of insulin, Tyr (16) - Leu (17); and three in the yeast proteinase B inhibitor, Phe (4) - Ile (5), Phe (20) - Leu (21) and Tyr (41) - Thr (42) (minor cleavage site).Thus, the mitochondrial proteinase cleaves peptide bonds at the carboxyl site of an aromatic amino acid and the amino site of a leucine, isoleucine, threonine or valine. The comparison with chymotrypsin A shows that the mitochondrial proteinase cleaves peptide bonds in a more restricted manner.  相似文献   

16.
Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G(s)α to C2 and the ensuing 7° rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.  相似文献   

17.
Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP–NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of eGFP–NPRA. Treatment of cells with ANP initiated rapid internalization and co-localization of the receptor with early endosome antigen-1 (EEA-1), which was highest at 5 min and gradually decreased within 30 min. Similarly, co-localization of the receptor was observed with lysosome-associated membrane protein-1 (LAMP-1); however, after treatment with lysosomotropic agents, intracellular accumulation of the receptor gradually increased within 30 min. Co-IP assays confirmed that the localization of internalized receptors occurred with subcellular organelles during the endocytosis of NPRA. Rab 11, which was used as a recycling endosome (Re) marker, indicated that ∼20% of receptors recycled back to the plasma membrane. ANP-treated cells showed a marked increase in the IF of cGMP, whereas receptor was still trafficking into the intracellular compartments. Thus, after ligand binding, NPRA is rapidly internalized and trafficked from the cell surface into endosomes, Res and lysosomes, with concurrent generation of intracellular cGMP.  相似文献   

18.
Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th  相似文献   

19.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

20.
A complete series of analogs of tyrosine modified neurokinin A ([Tyr1]-NKA or [Tyr0]-NKA) has been synthesized by substituting each natural residue with 1-Cys. These analogs were tested for their ability to bind recombinant neurokinin-2 (NK-2) receptor. Substitution of Phe6 with Cys completely abolished binding of the analog to the receptor. Substitution of residues in the carboxyl-terminal region of the peptide (Met10, Leu9, Gly8, Val7) and Asp4 with Cys gave reductions in binding affinity of between 23- and 250-fold. Molecular dynamics simulations of these analogs suggest that changes in peptide structure and flexibility are not large contributors to the losses in receptor binding affinity. Reductions in binding affinity are therefore more confidently ascribed to losses of peptide-receptor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号