首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The synthesis of the bacteriocin cloacin DF13 and its release into the culture medium were genetically uncoupled by subcloning the gene encoding the bacteriocin release protein (BRP) from pCloDF13. The gene was cloned under the control of the IPTG-inducible lpp-lac promoter-operator system on the expression vector pINIIIA1, giving pJL1. A 4 kb DNA fragment of pJL1, containing the tandem lpp-lac promoter, the BRP gene and lacI (BRP cassette), was cloned into the pCloDF13 derivative plasmid pJN67, which encodes cloacin DF13 but not the release protein. Furthermore, the pCloDF13 immunity protein gene was subcloned downstream of the temperature-inducible P L promoter of the expression vector pPLc236, together with the BRP cassette. Growth, induction and excretion experiments with Escherichia coli cells harbouring the constructed plasmids revealed that: i) the BRP is the only pCloDF13-derived gene product responsible for the observed growth inhibition and apparent lysis of strongly induced cells. This growth inhibition and lysis can be prevented by Mg2+ ions added to the culture medium, and involves induction of phospholipase A activity. (ii) The expression of the BRP gene can be regulated by varying the IPTG concentration. (iii) A separately controlled and moderate induced BRP synthesis can be used to bring about the release of large amounts of cloacin DF13 under conditions that allow a strong induction of the bacteriocin and which do not result in lysis of cells. (iiii) Preliminary results indicated that the BRP can stimulate the release of immunity protein in the absence of cloacin or cloacin fragments.  相似文献   

2.
By oligonucleotide-directed mutagenesis, stop codon mutations were introduced at various sites in the pCloDF13-derived bacteriocin release protein (BRP) structural gene. The expression, lipid modification (incorporation of [3H]palmitate), and processing (in the presence and absence of globomycin) of the various carboxyl-terminal shortened BRPs were analyzed by a special electrophoresis system and immunoblotting with an antiserum raised against a synthetic BRP peptide, and their functioning with respect to release of cloacin DF13, lethality, and apparent host cell lysis were studied in Sup-, supF, and supP strains of Escherichia coli. All mutant BRPs were stably expressed, lipid modified, and processed by signal peptidase II, albeit with different efficiencies. The BRP signal peptide appeared to be extremely stable and accumulated in induced cells. Full induction of the mutant BRPs, including the shortest containing only 4 amino acid residues of the mature polypeptide, resulted in phospholipase A-dependent and Mg2+-suppressible apparent cell lysis. The extent of this lysis varied with the mutant BRP used. Induction of all mutant BRPs also prevented colony formation, which appeared to be phospholipase A independent. One shortened BRP, containing 20 amino acid residues of the mature polypeptide, was still able to bring about the release of cloacin DF13. The results indicated that the 8-amino-acid carboxyl-terminal segment of the BRP contains a strong antigenic determinant and that a small segment between amino acid residues 17 and 21, located in the carboxyl-terminal half of the BRP, is important for release of cloacin DF13. Either the stable signal peptide or the acylated amino-terminal BRP fragments (or both) are involved in host cell lysis and lethality.  相似文献   

3.
Expression of the pCloDF13-encoded bacteriocin-release protein (BRP) results in the release of periplasmic proteins into the culture medium. The BRP-mediated release of a periplasmic protein was investigated and optimized. As a periplasmic model protein, the 50-kDa dimeric E. coli fimbrial molecular chaperone FaeE was used. Plasmids were constructed for the simultaneous expression of the BRP and FaeE, controlled by independently inducible promoters. The efficiency of FaeE release increased when the BRP was targeted by the unstable murein lipoprotein signal peptide, instead of by its own stable signal peptide. Furthermore, optimal efficacy of FaeE release was found when cells of E. coli strain C600 were used, which harboured one plasmid encoding both FaeE and BRP instead of two separate plasmids and which were cultured at 37°C in broth supplemented with MgCl2. Maximal production levels of 21 mg FaeE/l culture were obtained.  相似文献   

4.
(Ca2+ + Mg2+)-ATPase activator protein associated with human erythrocyte membranes could be extracted with EDTA under isotonic condition at pH 7.6. No activator was released, however, using isotonic buffer alone. Like calmodulin, the activator in the EDTA extract migrated as a fast moving band on polyacrylamide gel electrophoresis. It was also heat-stable, was capable of stimulating active calcium transport and could stimulate (Ca2+ + Mg2+)-ATPase to the same extent. When chromatographed on a Sephacryl S-200 column, it was eluted in the same position as calmodulin and a membrane associated (Ca2+ + Mg2+)-ATPase activator prepared according to Mauldin and Roufogalis (Mauldin, D. and Roufogalis, B.D. (1980) Biochem. J. 187, 507–513). Furthermore, both Mauldin and Roufogalis protein and the activator in the EDTA extract exhibited calcium-dependent binding to a fluphenazine-Sepharose affinity column. On the basis of these data, it is concluded that the activator protein released from erythrocyte membranes by EDTA is calmodulin. A further pool of the ATPase activator could be released by boiling but not by Triton X-100 treatment of the EDTA-extracted membranes. This pool amounted to 8.9% of the EDTA-extractable pool.  相似文献   

5.
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175–4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.  相似文献   

6.
The pCloDF13-encoded bacteriocin release protein (BRP) is a lipoprotein which is synthesized as a precursor with an amino-terminal signal peptide that appears to be stable after cleavage. The role of the stable signal peptide in the functioning of the BRP was studied with respect to the release of cloacin DF13, 'lysis' and leakage of periplasmic proteins. The BRP gene fragment encoding the stable signal peptide was replaced by a fragment encoding the unstable peptide of the murein lipoprotein (Lpp). The resulting hybrid protein was normally acylated and processed by signal peptidase II, leaving no stable signal peptide in the cells. Expression of the hybrid protein did not result in the specific release of cloacin DF13, whereas 'lysis' and the release of periplasmic enzymes were unaffected. These results indicated a role for the stable BRP signal peptide in the translocation of cloacin DF13 across the cytoplasmic membrane.  相似文献   

7.
Isolated hepatocytes in physiological [Na+] 0 tightly maintain [Mg2+] i . Upon β-adrenergic stimulation or in the presence of permeable cAMP, hepatocytes release 5–10% (1–3 mM Mg2+) of their total Mg2+ content. However, isolated basolateral liver plasma membranes (bLPM), release Mg2+ in the presence of [Na+] o even in the absence of catecholamine stimulation. The data indicate that a physiological brake for Mg2+ efflux is present in the hepatocyte and is removed upon cellular signaling. In contrast, this regulation “brake” is absent in purified bLPM thus rendering them fully active. The present study was carried out to reconstruct the missing regulatory component. Activation of Mg2+ extrusion in intact cells is consistent with cAMP dependent phosphorylation of the transporter or a regulatory protein. Treatment of bLPM with a non-specific phosphatase such as alkaline phosphatase (AP), decreased Mg2+ efflux by 70% compared to untreated bLPM. When AP-treated bLPM were loaded with protein kinase A (PKA), and stimulated with permeable cAMP, Mg2+ transport fully recovered. These data suggest that phosphorylation of the Na+/Mg2+ exchanger or a nearby protein activates the Mg2+ transport mechanism in hepatocytes.  相似文献   

8.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

9.
Abstract The pCloDF1S encoded bacteriocin release protein (BRP) plays a role in the release of the bacteriocin cloacin DF13. The BRP signal peptide is stable after cleavage, and accumulates in the cytoplasmic membrane. A BRP which is correctly targeted by the unstable murein lipoprotein signal peptide (Lpp-BRP) is not capable of inducing the release of cloacin DF13. To investigate the role of the stable BRP signal peptide in the release of cloacin DF13, the stable BRP signal peptide and the Lpp-BRP were expressed in trans in cells also producing cloacin DF13. Expression and release experiments indicate that the stable signal peptide can complement the Lpp-BRP in the release of cloacin DF13.  相似文献   

10.
Aquaporins are important transmembrane water transport proteins which transport water and several neutral molecules. However, how aquaporins are involved in the synergistic transport of Mg2+and water remains poorly understood. Here, we found that the cassava aquaporin Me PIP2;7 was involved in Mg2+transport through interaction with Me MGT9, a lower affinity magnesium transporter protein. Knockdown of Me PIP2;7 in cassava led to magnesium deficiency in basal mature leaves wi...  相似文献   

11.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

12.
The gene encoding a hybrid BRP-Bla protein consisting of the pCloDF13 encoded BRP signal sequence, 25 of the 28 amino acid residues of the mature bacteriocin release protein (BRP) and the mature portion of beta-lactamase (Bla) was subcloned in the expression vector pEB112. A similar construct was made using a mutant gene encoding a BRP-Bla protein in which the cysteine residue at the +1 position was changed into a glycine residue. The expression, processing, functioning and subcellular localization of the 'wild-type' and mutant hybrid protein at high-level expression conditions were studied. The 'wild-type' BRP-Bla protein was mainly found in the outer membranes and possessed all the activities of the BRP itself; the protein was able to bring about the release of cloacin DF13 and caused apparent cell-lysis after high-level synthesis. The mutant hybrid protein was predominantly located in the inner membranes, was inactive in the release of cloacin DF13, but caused apparent cell-lysis only after strong induction.  相似文献   

13.
The present study tested the hypothesis that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in Ca2+/Calmodulin-dependent-kinase (CaM Kinase) IV and Protein Tyrosine Kinase (PTK ) activities. Animals were randomly divided into normoxic (Nx), hypoxic (Hx) and magnesium-pretreated hypoxic (Mg2+-Hx) groups. Cerebral hypoxia was confirmed biochemically by measuring ATP and phosphocreatine (PCr) levels. CaM Kinase IV and PTK activities were determined in Nx, Hx and Mg2+-Hx newborn piglets. There was a significant difference between CaM kinase IV activity (pmoles/mg protein/min) in Nx (270 ± 49), Mg2+-Hx (317 ± 82) and Hx (574 ± 41, P < 0.05 vs. Nx and Mg2+-Hx) groups. Similarly, there was a significant difference between Protein Tyrosine Kinase activity (pmoles/mg protein/h) in normoxic (378 ± 68), Mg2+-Hx (455 ± 67) and Hx (922 ± 66, P < 0.05 vs. Nx and Mg2+-Hx ) groups. We conclude that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in CaM Kinase IV and Protein Tyrosine Kinase activities. We propose that by blocking the NMDA receptor ion-channel mediated Ca2+-flux, magnesium sulfate administration inhibits the Ca2+/calmodulin-dependent activation of CaMKIV and prevents the generation of nitric oxide free radicals and the subsequent increase in PTK activity. As a result, phosphorylation of CREB and Bcl-2 family of proteins is prevented leading to prevention of programmed cell death.  相似文献   

14.
In a previous report (Yu and Yang,Biochem. Biophys. Res. Commun. 207, 140–147 (1995)], phosphorylase b kinase from rabbit skeletal muscle was found to be phosphorylated and activated by a cyclic nucleotide- and Ca2+-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (autokinase) from brain and liver (Yanget al, J. Biol. Chem. 262, 7034–7040, 9421–9427 (1987)]. In this report, the effect of Mg2+ ion concentration on the auto-kinase-catalyzed activation of phosphorylase b kinase is investigated. The levels of phosphorylation and activation of phosphorylase b kinase catalyzed by auto-kinase are found to be dependent on the concentration of Mg2+ ion used. Phosphorylation of phosphorylase b kinase at high Mg2+ ion (>9 mM) is 2–3 times higher than that observed at low Mg2+ ion (1 mM) and this results in a further 2- to 3-fold activation of the enzyme activity at high Mg2+ ion. Analysis of the phosphorylation stoichiometry of and subunits of phosphorylase b kinase at different Mg2+ ion concentrations further reveals that the phosphorylation level of the subunit remains almost unchanged, whereas the phosphorylation level of the subunit increases dramatically and correlates with the increased enzyme activity. In similarity with the subunit, phosphorylations of myelin basic protein and histone 2A by auto-kinase are also unaffected by Mg2+ ion. Taken together, the results provide initial evidence that Mg2+ ion may specifically render thea subunit a better substrate for auto-kinase to cause further phosphorylation/activation of phosphorylase b kinase, representing a new mode of control mechanism for the regulation of auto-kinase involved in the phosphorylation and concurrent activation of phosphorylase b kinase.  相似文献   

15.
The insulin mimic, peroxide of vanadate (pervanadate), stimulated 35S-methionine incorporation into Xenopus oocyte protein in a Mg2+-dependent manner. Reducing the extracellular Mg2+ concentration from 1.0 to 0.1 mM decreased the pervanadate-stimulated component of incorporation by 35%; with 0.01 mM Mg2+ or lower, the pervanadate-stimulated component was abolished. In addition, reducing extracellular Mg2+ to 0.01 mM inhibited about 50% of the insulinstimulated component of methionine incorporation. Mg2+ depletion had no effects on incorporation in controls or when protein synthesis was stimulated by Zn2+ or bovine growth hormone. Thus, not all substances that stimulated protein synthesis showed a dependence on extracellular Mg2+. Reducing extracellular Ca2+ had no effects on methionine incorporation in control cells or in cells stimulated by pervanadate or insulin. When oocytes maintained in a paraffin oil medium were brought into contact with a 0.5 m?I droplet of buffer containing the Mg2+ indicator dye, mag-fura-2, and pervanadate, apparent droplet Mg2+ decreased rapidly, indicating net uptake by the cells. Insulin also caused a net uptake of Mg2+. In contrast, apparent extracellular Mg2+ was constant when cells were in contact with droplets containing no effectors. Together, these data indicate that extracellular Mg2+, but not Ca2+, is involved in the stimulation of protein synthesis by pervanadate, and to a lesser extent by insulin. Pervanadate appears to induce a net uptake of Mg2+, and this change in membrane transport may be an early event in signalling the increase in translation. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The pCloDF13-encoded bacteriocin release protein (BRP; Mr 2,871) is essential for the translocation of cloacin DF13 across the cell envelope of producing Escherichia coli cells. Overproduction of this BRP provokes lysis (quasilysis) of cells. Construction and analysis of a hybrid BRP-beta-lactamase protein (BRP-Bla) demonstrated that the BRP contains a lipid modified cysteine residue at its amino terminus and is mainly located in the outer membrane. The significance of lipid modification for the localization and functioning of the BRP was investigated. Site-directed mutagenesis was used to substitute the cysteine residue for a glycine residue in the lipobox of the BRP and the BRP-Bla protein. The mutated BRP was unable to bring about the release of cloacin DF13 and could not provide the lysis (quasilysis) of host cells. However, the mutated BRP strongly inhibited the colony-forming ability of the cells, indicating that induction of the mutated protein still affected cell viability. In contrast to the wild-type BRP-Bla protein, the mutated BRP-Bla protein was mainly located in the cytoplasmic membrane, indicating that the mutation prevented the proper localization of the protein. The results indicated that lipid modification of the BRP is required for its localization and release of cloacin DF13, but not for its lethality to host cells.  相似文献   

17.
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro 153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.  相似文献   

18.
Mg2+ transport in the kidney   总被引:2,自引:0,他引:2  
Magnesium is abundant in biological systems and an important divalent cation in the human body. Mg2+ helps mediate cellular energy metabolism, ribosomal and membrane integrity. Additionally Mg2+ modulates the activity of several membrane transport and signal transduction systems. Despite its importance however, little is known about the molecular mechanisms of Mg2+ transport and homeostasis in mammals. In mammals the amount of Mg2+ absorption is about the same as the amount of Mg2+ excretion in urine. Additionally, when total Mg2+ intake is deficient, the kidney is capable of reabsorbing all filtered Mg2+. This balance between intake and excretion indicates that the kidney plays a principal role in maintenance of total body Mg2+ homeostasis. Within the kidney, Mg2+ filtered by the glomerulus is handled in different ways along the nephron. About 10–20% of Mg2+ is reabsorbed by the proximal tubule. the bulk of Mg2+ (about 50–70%) is reabsorbed by the cortical thick ascending limb of the loop of Henle. In this region, Mg2+ moves across the epithelium through the paracellular pathway, driven by the positive lumenal transepithelial voltage. A recently cloned human gene, paracellin-1 was shown to encode a protein localized to the tight junctions of the cortical thick ascending limb and is thought to mediate Mg2+ transport via the paracellular space of this epithelium. The distal convoluted tubule reabsorbs the remaining 5–10% of filtered Mg2+. This segment seems to play an important role in determining final urinary excretion, since there is no evidence for significant Mg2+ absorption beyond the distal tubule. Although many renal Mg2+ transport activities have been characterized, no Mg2+ transporter cDNAs have been cloned from mammalian tissues. Recent research has certainly expanded our knowledge of Mg2+ transport in kidney; but details of the transport processes and the mechanisms by which they control Mg2+ excretion must await cloning of renal Mg2+ transporters and/or channels. Such information would provide new concepts in our understanding of renal Mg2+ handling.  相似文献   

19.
Cardiac ventricular myocytes extrude a sizeable amount of their total Mg2+ content upon stimulation by β-adrenergic agonists. This extrusion occurs within a few minutes from the application of the agonist, suggesting the operation of rapid and abundantly represented Mg2+ transport mechanisms in the cardiac sarcolemma. The present study was aimed at characterizing the operation of these transport mechanisms under well defined conditions. Male Sprague-Dawley rats were used to purify a biochemical standardized preparation of sealed rat cardiac sarcolemmal vesicles. This experimental model has the advantage that trans-sarcolemmal cation transport can be studied under specific extra- and intra-vesicular ionic conditions, in the absence of intracellular organelles, and buffering or signaling components. Magnesium ion (Mg2+) transport was assessed by atomic absorbance spectrophotometry. The results reported here indicate that: (1) sarcolemma vesicles retained trapped intravesicular Mg2+ in the absence of extravesicular counter-ions; (2) the addition of Na+ or Ca2+ induced a rapid and concentration-dependent Mg2+ extrusion from the vesicles; (3) co-addition of maximal concentrations of Na+ and Ca2+ resulted in an additive Mg2+ extrusion; (4) Mg2+ extrusion was blocked by addition of amiloride or imipramine; (5) pre-treatment of sarcolemma vesicles with alkaline phosphatase at the time of preparation completely abolished Na+- but not Ca2+-induced Mg2+ extrusion; (6) Na+-dependent Mg2+ transport could be restored by stimulating vesicles loaded with protein kinase A catalytic subunit and ATP with membrane-permeant cyclic-AMP analog; (7) extra-vesicular Mg2+ could be accumulated in exchange for intravesicular Na+ via a mechanism inhibited by amiloride or alkaline phosphatase treatment; (8) Mg2+ accumulation could be restored via cAMP/protein kinase A protocol. Overall, these data provide compelling evidence for the operation of distinct Na+- and Ca2+-dependent Mg2+ extrusion mechanisms in sarcolemma vesicles. The Na+-dependent mechanism appears to be specifically activated via protein kinase A/cAMP-dependent phosphorylation process, and can operate in either direction based upon the cation concentration gradient across the sarcolemma. The Ca2+-dependent mechanism, instead, only mediates Mg2+ extrusion in a cAMP-independent manner.  相似文献   

20.
The Escherichia coli (E. coli) prokaryotic expression system is widely used in the field of biology. The currently adopted processes for inducing cell wall rupture, in order to release the target protein, are complex and cumbersome. We developed an auto-inducible E. coli lysis system that is regulated by exogenous magnesium ion (Mg2+) concentration. This system is composed of a strictly Mg2+-regulated promoter Pmgt from the mgtB gene of Salmonella typhimurium, and the lysis genes from λ bacteriophage. Both the wild type and Sam7-mutant lysis genes were inducibly expressed in E. coli under Mg2+-depleted conditions. The former caused a rapid lysis, while the latter induced very mild lysis of the host strains. However, rapid lysis was observed when the latter was resuspended in Tris–EDTA buffer. Finally, the inducible lysis cassette containing wild type lysis gene was introduced into an expression plasmid expressing GFP gene and efficient lysis of the host E. coli strain and subsequent release of the target protein was achieved in Mg2+-depleted conditions. Collectively, the current study indicates that this novel inducible lysis system could have attractive applications in the field of protein expression and provides new insights for the development of bacterium-based vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号