首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interest on lipases from different sources (microorganisms, animals and plants) has markedly increased in the last decade due to the potential applications of lipases in industry and in medicine. Microbial and mammalian lipases have been purified to homogeneity, allowing the successful determination of their primary aminoacid sequence and, more recently, of the three-dimensional structure. The X-ray studies of pure lipases will enable the establishment of the structure-function relationships and contribute for a better understanding of the kinetic mechanisms of lipase action on hydrolysis, synthesis and group exchange of esters. This article reviews the separation and purification techniques that were used in the recovery of microbial, mammalian and plant lipases. Several purification procedures are analysed taking into account the sequence of the methods and the number of times each method is used. Novel purification methods based on liquid-liquid extraction, membrane processes and immunopurification are also reviewed.  相似文献   

2.
Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds.  相似文献   

3.
Staphylococcal lipases: biochemical and molecular characterization   总被引:2,自引:0,他引:2  
Rosenstein R  Götz F 《Biochimie》2000,82(11):1005-1014
To date, the nucleotide sequences of nine different lipase genes from six Staphylococcus species, three from S. epidermidis, two from S. aureus, and one each from S. haemolyticus, S. hyicus, S. warneri, and S. xylosus, have been determined. All deduced lipase proteins are similarly organized as pre-pro-proteins, with pre-regions corresponding to a signal peptide of 35 to 38 amino acids, a pro-peptide of 207 to 321 amino acids with an overall hydrophilic character, and a mature peptide comprising 383 to 396 amino acids. The lipases are secreted in the pro-form and are afterwards processed to the mature form by specific proteases. The pro-peptide of the S. hyicus lipase is necessary for efficient translocation and for protection against proteolytic degradation. Despite being very similar in their primary structures the staphylococcal lipases show significant differences in their biochemical and catalytic properties, such as substrate selectivity, pH optimum and interfacial activation. The lipase from S. hyicus is unique among the staphylococcal and bacterial lipases in that it has not only lipase activity, but also a high phospho-lipase activity. All staphylococcal lipases are dependent on Ca(2+), which is thought to have a function in stabilizing the tertiary structure of the lipases. Evidence exists that staphylococcal lipases like other bacterial lipases, possess a lid-like domain that might be involved in the interfacial activation of these enzymes.  相似文献   

4.
Cutinase, a small lipolytic enzyme, is the smallest member of the alpha/beta-hydrolase fold family, to which the other lipases belong. Cutinase has a catalytic activity comparable to that of pancreatic lipase on short chain triglycerides, and retains a significant activity on long chain triglycerides. Cutinase has been extensively studied using site-directed mutagenesis, and we have thoroughly characterized it from a structural point of view. Besides the native enzyme, tens of mutants and several inhibitor complexes have been solved, providing a complete and precise picture of the structure, dynamics and catalytic machinery of cutinase.  相似文献   

5.
The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad “Ser-Asp-His”, a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis.  相似文献   

6.
Research into the structure-function relationships of lipases and esterases has increased significantly during the past decade. Of particular importance has been the deduction of several crystal structures, providing a new basis for understanding these enzymes. The generated insights have, together with cloning and expression, aided studies on structure-function relationships of hormone-sensitive lipase (HSL). Novel phosphorylation sites have been identified in HSL, which are probably important for activation of HSL and lipolysis. Functional and structural analyses have revealed features in HSL common to lipases and esterases. In particular, the catalytic core with a catalytic triad has been unveiled. Furthermore, the investigations have given clear suggestions with regard to the identity of functional and structural domains of HSL. In the present paper, these studies on HSL structure-function relationships and short-term regulation are reviewed, and the results presented in relation to other discoveries in regulated lipolysis.  相似文献   

7.
We describe the first lipase structure from a thermophilic organism. It shares less than 20% amino acid sequence identity with other lipases for which there are crystal structures, and shows significant insertions compared with the typical alpha/beta hydrolase canonical fold. The structure contains a zinc-binding site which is unique among all lipases with known structures, and which may play a role in enhancing thermal stability. Zinc binding is mediated by two histidine and two aspartic acid residues. These residues are present in comparable positions in the sequences of certain lipases for which there is as yet no crystal structural information, such as those from Staphylococcal species and Arabidopsis thaliana. The structure of Bacillus stearothermophilus P1 lipase provides a template for other thermostable lipases, and offers insight into mechanisms used to enhance thermal stability which may be of commercial value in engineering lipases for industrial uses.  相似文献   

8.
A recombinant lipase cloned from Pseudomonas fragi strain IFO 3458 (PFL) was found to retain significant activity at low temperature. In an attempt to elucidate the structural basis of this behaviour, a model of its three-dimensional structure was built by homology and compared with homologous mesophilic lipases, i.e. the Pseudomonas aeruginosa lipase (45% sequence identity) and Burkholderia cepacia lipase (38%). In this model, features common to all known lipases have been identified, such as the catalytic triad (S83, D238 and H260) and the oxyanion hole (L17, Q84). Structural modifications recurrent in cold-adaptation, i.e. a large amount of charged residues exposed at the protein surface, have been detected. Noteworthy is the lack of a disulphide bridge conserved in homologous Pseudomonas lipases that may contribute to increased conformational flexibility of the cold-active enzyme.  相似文献   

9.
The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 A resolution. It is the first structure of a member of homology family 1.4 of bacterial lipases. The lipase shows a compact minimal alpha/beta hydrolase fold with a six-stranded parallel beta-sheet flanked by five alpha-helices, two on one side of the sheet and three on the other side. The catalytic triad residues, Ser77, Asp133 and His156, and the residues forming the oxyanion hole (backbone amide groups of Ile12 and Met78) are in positions very similar to those of other lipases of known structure. However, no lid domain is present and the active-site nucleophile Ser77 is solvent-exposed. A model of substrate binding is proposed on the basis of a comparison with other lipases with a covalently bound tetrahedral intermediate mimic. It explains the preference of the enzyme for substrates with C8 fatty acid chains.  相似文献   

10.
Structure and evolution of the lipase superfamily.   总被引:11,自引:0,他引:11  
The lipase superfamily includes three vertebrate and three invertebrate (dipteran) proteins that show significant amino acid sequence similarity to one another. The vertebrate proteins are lipoprotein lipase (LPL), hepatic lipase (HL), and pancreatic lipase (PL). The dipteran proteins are Drosophila yolk proteins 1, 2, and 3. We review the relationships among these proteins that have been established according to gene structural relatedness and introduce our findings on the phylogenetic relationships, distance relationships, and evolutionary history of the lipase gene superfamily. Drosophila yolk proteins contain a 104 amino acid residue segment that is conserved with respect to the lipases. We have used the yolk proteins as an outgroup to root a phylogeny of the lipase family. Our phylogenetic reconstruction suggests that ancestral PL diverged earlier than HL and LPL, which share a more recent root. Human and bovine LPL are shown to be more closely related to murine LPL than to guinea pig LPL. A comparison of the distance (a measure of the number of substitutions between sequences) between mammalian and avian LPL reveals that guinea pig LPL has the largest distance from the other mammals. Human, rodent, and rabbit HL show marked divergence from one another, although they have similar relative rates of amino acid substitution when compared to human LPL as an outgroup. Human and porcine PL are not as divergent as human and rat HL, suggesting that PL is more conserved than HL. However, canine PL demonstrates an unusually rapid rate of substitution with respect to the other pancreatic lipases. The lipases share several structurally conserved features. One highly conserved sequence (Gly-Xaa-Ser-Xaa-Gly) contains the active site serine. This feature, which agrees with that found in serine esterases and proteases, is found within the entire spectrum of lipases, including the evolutionarily unrelated prokaryotic lipases. We review the location and possible activity of putative lipid binding domains. We have constructed a conservation index (CI) to display conserved structural features within the lipase gene family, a CI of 1.0 signifying perfect conservation. We have found a correlation between a high CI and the position of conserved functional structures. The putative lipid-binding domains of LPL and HL, the disulfide-bridging cysteine residues, catalytic residues, and N-linked glycosylation sites of LPL, HL, and PL all lie within regions having a CI of 0.8 or higher. A number of amino acid substitutions have been identified in familial hyperchylomicronemia which result in loss of LPL function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Rhizopus niveus lipase (RNL) has a unique structure consisting of two noncovalently bound polypeptides (A-chain and B-chain). To improve this enzyme's properties by protein engineering, we have developed a new expression system for the production of recombinant lipase in the yeast Saccharomyces cerevisiae. For the present study, we developed a more efficient expression system using the strain ND-12B and the multicopy-type plasmid pJDB219. We purified two types of recombinant lipases, each to a single peak by gel-filtration HPLC, although they were found to be heterogeneous by SDS-PAGE. Analysis of reversed-phase HPLC, N-terminal amino acid sequence, and sugar content showed that the difference between the two types of lipases was due mainly to their sugar content (high or low mannose type). Moreover, there were two species within each type of lipase. One kind was processed to the A-chain and B-chain as in the native lipase, while the other remained unprocessed. Although these yeast-purified lipases contained several posttranslational modifications and different glycosylations, their secondary structures were the same as those of the native lipase as measured by circular dichroism spectra and determination of disulfide bonding. This suggests that protein folding of the recombinant lipase occurred correctly in yeast.  相似文献   

12.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

13.
The yeast Candida antarctica produces two different lipases, lipases A and B. While lipase B (CAL-B) is probably the mostly employed hydrolase in the biocatalysis field, the use of the lipase A (CAL-A) has been rather scarce and consequently its tridimensional structure has not been elucidated yet. However, CAL-A is a useful biocatalyst with many different applications that have been described especially in the last few years. Its attractiveness results from its unique features among hydrolases: the high thermostability, allowing operation at T > 90 °C; the ability to accept tertiary and sterically hindered alcohols, which has recently been attributed to the existence of a specific aminoacidic sequence in the active site; the sn-2 recognition in hydrolysis of triglycerides; the selectivity towards trans-fatty acids; the stability in the acidic pH range. Furthermore, it is considered to be an excellent biocatalyst for the asymmetric synthesis of amino acids/amino esters, due to its chemoselectivity towards amine groups. Considering all these aspects, in the present review, the origin, the properties and the applications of the CAL-A are briefly described and discussed, pointing out the unique characteristics of this biocatalyst.  相似文献   

14.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

15.
The already known X-ray structures of lipases provide little evidence about initial, discrete structural steps occurring in the first phases of their activation in the presence of lipids (process referred to as interfacial activation). To address this problem, five new Thermomyces (formerly Humicola) lanuginosa lipase (TlL) crystal structures have been solved and compared with four previously reported structures of this enzyme. The bias coming from different crystallization media has been minimized by the growth of all crystals under the same crystallization conditions, in the presence of detergent/lipid analogues, with low or high ionic strength as the only main variable. Resulting structures and their characteristic features allowed the identification of three structurally distinct species of this enzyme: low activity form (LA), activated form (A), and fully Active (FA) form. The isomerization of the Cys268-Cys22 disulfide, synchronized with the formation of a new, short alpha(0) helix and flipping of the Arg84 (Arginine switch) located in the lid's proximal hinge, have been postulated as the key, structural factors of the initial transitions between LA and A forms. The experimental results were supplemented by theoretical calculations. The magnitude of the activation barrier between LA (ground state) and A (end state) forms of TlL (10.6 kcal/mol) is comparable to the enthalpic barriers typical for ring flips and disulfide isomerizations at ambient temperatures. This suggests that the sequence of the structural changes, as exemplified in various TlL crystal structures, mirror those that may occur during interfacial activation.  相似文献   

16.
Lipase-catalyzed alcoholysis of triolein dissolved in ethanol or isopropanol for the formation of ethyl and isopropyl esters was investigated. Of 16 lipases screened, Amano lipase from P. fluorescens was selected for investigation of the effects of basic reaction conditions on alcoholysis yields. Ethanolysis yields were only slightly affected by water additions to immobilized lipase preparations. Isopropyl ester yields decreased with water addition. Good operational stability was observed over 17 days. Changes in initial triolein concentration in the range 5–50 mM had very little effect on ester yields. The ionic strength of the phosphate buffer used in lipase immobilization affected ethanolysis and isopropanolysis yields in opposite ways. The highest ethanolysis yields were obtained with lipases immobilized from 250 mM buffer, while isopropyl ester yields were highest with lipases immobilized from water. In addition, the quantities and isomers of monoglyceride intermediates in ethanolysis were affected by the immobilization buffer strength. Larger quantities of 2-monoglycerides were formed in ethanolysis reactions with lipase preparations immobilized from water.  相似文献   

17.
A method for active-site titration of lipases has been developed based on irreversible inhibition by methyl p-nitrophenyl n-hexylphosphonate. This method was applied to five lipases displaying from minor to pronounced interfacial activation. Soluble and immobilized lipases were successfully titrated in aqueous media. A low concentration of sodium dodecyl sulfate was needed for lipases displaying pronounced interfacial activation. The carrier of some of the immobilized preparations adsorbed part of the produced p-nitrophenolate. This problem could be solved by extracting the p-nitrophenolate after inhibition. The method was extended to apolar organic solvents in the case of immobilized lipase preparations.  相似文献   

18.
The complete sequence of the horse pancreatic lipase was elucidated by combining polypeptide chain and cDNA sequencing. Among the structural features of horse lipase, it is worth mentioning that Lys373 is not conserved. This residue, which is present in human, porcine and canine lipases, has been assumed to be involved in p-nitrophenyl acetate hydrolysis by pancreatic lipases. Kinetic investigation of the p-nitrophenyl acetate hydrolysis by the various pancreatic lipases and by the C-terminal domain (336-449) of human lipase reveals that this hydrolysis is the result of the superimposition of independent events; a specific linear hydrolysis occurring at the active site of lipase, a fast acylation depending on the presence of Lys373 and a non-specific hydrolysis most likely occurring in the C-terminal domain of the enzyme. This finding definitely proves that pancreatic lipase bears only one active site and raises the question of a covalent catalysis by pancreatic lipases. Moreover, based on sequence comparison with the above-mentioned pancreatic lipases, three residues located in the C-terminal domain, Lys349, Lys398 and Lys419, are proposed as possible candidates for lipase/colipase binding.  相似文献   

19.
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.  相似文献   

20.
Using the MolScript version 2.1 computer program for protein molecule modeling and X-ray structure analysis data the spatial structures of several hydrolytic enzymes have been compared. These include glucoamylase from Aspergillus awamori and Saccharomycopsis fibuligera and lipases from Rhizopus japonicus. Results on homology of amino acid sequences and topology of secondary structure elements were obtained. 3D models of these enzymes with positioning of functionally important groups in the active site cavity were built.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号