首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long‐term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species‐specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold‐enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold‐tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.  相似文献   

2.
Standardized phylogeographic studies across codistributed taxa can identify important refugia and biogeographic barriers, and potentially uncover how changes in adaptive constraints through space and time impact on the distribution of genetic diversity. The combination of next‐generation sequencing and methodologies that enable uncomplicated analysis of the full chloroplast genome may provide an invaluable resource for such studies. Here, we assess the potential of a shotgun‐based method across twelve nonmodel rainforest trees sampled from two evolutionary distinct regions. Whole genomic shotgun sequencing libraries consisting of pooled individuals were used to assemble species‐specific chloroplast references (in silicio). For each species, the pooled libraries allowed for the detection of variation within and between data sets (each representing a geographic region). The potential use of nuclear rDNA as an additional marker from the NGS libraries was investigated by mapping reads against available references. We successfully obtained phylogeographically informative sequence data from a range of previously unstudied rainforest trees. Greater levels of diversity were found in northern refugial rainforests than in southern expansion areas. The genetic signatures of varying evolutionary histories were detected, and interesting associative patterns between functional characteristics and genetic diversity were identified. This approach can suit a wide range of landscape‐level studies. As the key laboratory‐based steps do not require prior species‐specific knowledge and can be easily outsourced, the techniques described here are even suitable for researchers without access to wet‐laboratory facilities, making evolutionary ecology questions increasingly accessible to the research community.  相似文献   

3.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

4.
Abstract

This study represents a preliminary step toward understanding the genetic structure of Persian oak in Iran. The genetic variability of Quercus brantii in Western forest of Iran was evaluated by amplified fragment length polymorphism (AFLP), chloroplast microsatellite and leaf morphology. Fifty-five trees from eight regions were sampled from across the range of Chaharmahal va Bakhtiari province of Iran. Twenty morphological traits were analyzed through clustering and ordination method. At morphological level, the applied statistics suggest that macromorphological traits significantly differentiate between populations. The overall sample shows a proportion of AFLP polymorphic markers of 92.1%, denoting a high level of variability. Based on AFLP data, differences among populations within geographic regions account for 11.6% of the total variation and only 0.57% is attributed to variation among regions. Based on chloroplast microsatellite (cpSSR), 34% of total variation was found among populations, suggesting a high within-population haplotype diversity. The dendrogram obtained from cpSSR showed a general pattern quite different from the pattern obtained from morphological analysis and AFLP markers.  相似文献   

5.
A cline of allozyme variation inAbies mariesii   总被引:1,自引:0,他引:1  
Genetic variation at 22 allozyme loci was examined for 1,003 trees from 11 isolated natural populations ofAbies mariesii covering all except the southernmost region of its geographic range. Genetic diversity within species (H es=0.063) was low compared to many other long-lived woody species. Most of the genetic variation is found within populations (G ST=0.144) despite their isolated distribution. Genetic distance between populations was positively correlated with geographic distance. Genetic diversity within populations was generally low (meanH ep=0.054), but varied across populations in a clinal fashion such that genetic variation decreased with increasing latitude. These genetic characteristics may reflect the distribution history of this species.  相似文献   

6.
Fragmentation of the habitat due to glaciations, fires and human activities affected the distribution range of Araucaria araucana in southern South America. On the borders of the Argentinean Patagonian steppe, the species is restricted to isolated patches without natural regeneration. Our objective is to test the hypothesis that these populations are relicts of pre-Pleistocene origin. A total of 224 individuals from 16 populations were sampled. Twenty chloroplast microsatellites, 19 non-coding chloroplast DNA regions and eight mitochondrial DNA fragments were screened for polymorphisms. A low transferability rate of universal primers from Pinaceae and also a low variation were detected for this ancient species. Only one non-coding region of the chloroplast DNA showed polymorphism allowing the identification of five haplotypes. A low genetic differentiation (G ST  = 0.11; G′ ST  = 0.267) and lack of geographic structure was found. Allelic richness was lower and genetic differentiation higher among the eastern isolated populations, suggesting a long lasting persistence. Conservation guidelines are given for these relictual populations, which are located outside the limits of the National Parks.  相似文献   

7.
Pinus nigra is a forest and low elevation mountain species found around the Mediterranean Sea that has had its distribution reduced and fragmented by anthropogenic disturbance. Due to commercial interest it is currently being replanted, however, the genetic structure of populations is little known and current planting strategies could threaten its genetic diversity. In the present study we investigated the genetic structure and genetic diversity of P. nigra populations in Bulgaria using chloroplast microsatellite markers and terpene analysis. Nine provenances were chosen throughout the species' range in Bulgaria. Following DNA extraction, chloroplast microsatellite (cpSSR) loci were surveyed using three primer pairs. Between 5 and 9 size variants were identified at each locus. A total of 22 size variants at the 3 loci were identified, that were combined in 68 different haplotypes, of which 7 represent 39.81% of the genetic structure. AMOVA analysis revealed that 6.06% of the variation was found among populations, while 93.94% was expressed within populations. The cpSSR analysis divided European Black pine populations into four groups, the first represented by populations located the eastern Rhodopes, Sr. Gora and St. Planina mountains, while the second group is primarily located in the Phodopes and Slavianca mountains. The populations from Pirin and Osogovo mountains show different genetic patterns. Terpene analysis revealed that most of the monoterpene pool in P. nigra was accounted for by α-pinene followed by β-pinene. The presence of four distinct terpene groups is not consistent with physical distances between populations, and a similar non-significant correlation between genetic distance determined by chloroplast microsatellites analysis and chemotype distance (determined by terpenes) was observed. Our results suggest that the structural pattern of genetic diversity of cpDNA in European Black pine populations is the consequence of historical biogeographic processes.  相似文献   

8.
In the present study we investigated the genetic structure and genetic diversity of Pinus heldreichii populations in Bulgaria using chloroplast microsatellite markers and terpene analysis. We were interested in addressing the following questions: (1) can population structuring in Bosnian pine be detected via chloroplast microsatellite markers; (2) are there differences in population differentiation as determined by terpenes and microsatellites; and (3) how are the patterns of size variant frequencies and geographical distances related. Four provenances were chosen throughout the species' range in Bulgaria. Following DNA extraction, chloroplast microsatellite (cpSSR) loci were surveyed using 6 primer pairs. Between 2 and 5 size variants were identified at each locus. A total of 16 size variants at the 6 loci were identified, 4 occurring at low frequencies. They were combined in 21 different haplotypes including 11 that were unique. AMOVA analysis revealed that 18.25% of the variation was found among populations, while 81.75% was expressed within populations. The cpSSR analysis divided Bosnian pine populations into two groups, the first represented by populations B, C and D located in the south and north-western part of the Pirin and Slavianka mountains, while the second group, represented by population A, is located in the north-eastern Pirin mountain. Terpene analysis revealed that on average, 59% of the monoterpene pool in P. heldreichii is accounted for by limonene (range 36–48%) followed by α-pinene (range 16–17%). The presence of two distinct groups (Pop-A, Pop-D and Pop-B, Pop-C) is more consistent with physical distances between populations. No significant correlation between genetic distance determined by chloroplast microsatellites analysis and chemotype distance determined by terpenes was observed. Our results suggest that the structural pattern of genetic diversity of cpDNA in Bosnian pine populations is the consequence of historical and biogeographical processes.  相似文献   

9.
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata, is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron, is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.  相似文献   

10.
The wild flowering cherry Prunus lannesiana var. speciosa is highly geographically restricted, being confined to the Izu Islands and neighboring peninsulas in Japan. In an attempt to elucidate how populations of this species have established we investigated the genetic diversity and differentiation in seven populations (sampling 408 individuals in total), using three kinds of genetic markers: chloroplast DNA (cpDNA), amplified fragment length polymorphisms (AFLPs), and 11 nuclear SSR polymorphic loci. Eight haplotypes were identified based on the cpDNA sequence variations, 64 polymorphic fragments were scored for the AFLP markers, and a total of 154 alleles were detected at the 11 nuclear SSR loci. Analysis of molecular variance showed that among-population variation accounted for 16.55, 15.04 and 7.45% of the total detected variation at the cpDNA, AFLPs, and SSR loci, respectively. Thus, variation within populations accounted for most of the genetic variance for all types of markers, although the genetic differentiation among populations was also highly significant. For cpDNA variation, no clear structure was found among the populations, except that of the most distant island, although an “isolation by distance” pattern was found for each marker. Both neighbor-joining trees and structure analysis indicate that the genetic relationships between populations reflect geological variations between the peninsula and the islands and among the islands. Furthermore, hybridization with related species may have affected the genetic structure, and some genetic introgression is likely to have occurred.  相似文献   

11.
Aim  This study aims to assess the role of long-distance seed dispersal and topographic barriers in the post-glacial colonization of red maple ( Acer rubrum L.) using chloroplast DNA (cpDNA) variation, and to understand whether this explains the relatively higher northern diversity found in eastern North American tree species compared with that in Europe.
Location  North-eastern United States.
Methods  The distribution of intraspecific cpDNA variation in temperate tree populations has been used to identify aspects of post-glacial population spread, including topographic barriers to population expansion and spread by long-distance seed dispersal. We sequenced c.  370 cpDNA base pairs from 221 individuals in 100 populations throughout the north-eastern United States, and analysed spatial patterns of diversity and differentiation.
Results  Red maple has high genetic diversity near its northern range limit, but this diversity is not partitioned by topographic barriers, suggesting that the northern Appalachian Mountains were not a barrier to the colonization of red maple. We also found no evidence of the patchy genetic structure that has been associated with spread by rare long-distance seed dispersal in previous studies.
Main conclusions  Constraints on post-glacial colonization in eastern North America seem to have been less stringent than those in northern Europe, where bottlenecks arising from long-distance colonization and topographic barriers appear to have strongly reduced genetic diversity. In eastern North America, high northern genetic diversity may have been maintained by a combination of frequent long-distance dispersal, minor topographic obstacles and diffuse northern refugia near the ice sheet.  相似文献   

12.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

13.
Aim The distribution of genetic variation in the Australian dry sclerophyll plant Hardenbergia violacea (Fabaceae) is examined in the context of Pleistocene climate change in order to identify likely refugia. Particular consideration is given to the origin of range disjunctions in South Australia and Tasmania, and to determining whether the Tasmanian population is indigenous or recently introduced from mainland Australia. Location Southeastern Australian mainland and Tasmania. Methods A combination of chloroplast polymerase chain reaction–restriction fragment length polymorphism and genomic amplified fragment length polymorphism (AFLP) marker systems was used to examine the genetic structure of 292 individuals from 13 populations across the range of H. violacea in southeastern Australia. Results Hardenbergia violacea populations in Tasmania and southern Victoria were characterized by low, almost monotypic chloroplast diversity. New South Wales showed higher haplotype diversity and haplotype sharing among widely distributed populations. Principal coordinates analysis (PCoA) of the AFLP data found a strong latitudinal cline in AFLP variation from northern New South Wales south to Tasmania. The Tasmanian population formed an isolated and somewhat disjunct genetic cluster at one end of this cline. However, the South Australian population was an exception to the clinal variation shown by all other populations, forming a highly disjunct cluster in the PCoA. Within‐population genetic diversity was low in both disjunct populations. Main conclusions The genetic evidence indicates that the Tasmanian population is likely to be indigenous and probably the product of vicariance, which was followed by range contraction at the Last Glacial Maximum or an earlier glacial event. The deep phylogenetic disjunction in South Australia is evidence of a much earlier separation on mainland Australia. The chloroplast structure indicates that, during the Pleistocene, H. violacea underwent broad‐scale recolonization in southern Victoria and Tasmania, possibly from a large continental refugium in eastern New South Wales. We conclude that H. violacea, and presumably the sclerophyll communities in which it occurs, have undergone multiple range contractions to large continental refugia during different Pleistocene glaciations in southeastern Australia.  相似文献   

14.
There is an urgent need to maintain and restore a broad genetic base for the management of Dalbergia monticola, a very economically important but endangered tree species in Madagascar. Random amplified polymorphism DNAs (RAPDs) and chloroplast microsatellite markers were used to quantify the genetic variation and to analyse the geographic distribution of diversity. Ten locations covering most of the natural range were sampled. Sixty-three RAPD polymorphic and 15 monomorphic loci were obtained from 122 individuals. Genetic diversity was low and very close among populations and regions. The unrooted neighbour-joining tree exhibited 4 groups, representing 6% (p = 0.000) of the total variation. The greater part of the variance, 81%, was observed within populations. A Mantel test suggested that genetic distances between populations were weakly correlated with geographic distances (R = 0.46, p = 0.12). The three chloroplast microsatellite primers assayed on 100 individuals gave 13 chlorotypes. Most of the populations showed 2 or 3 haplotypes. Haplotype diversity for the total population was equal to HeCp = 0.83 and ranged from 0.00 to 0.80 among the populations. The unrooted neighbour-joining tree exhibited 4 groups corresponding to the four regions representing 80% (p = 0.0000) of the total variation. Genetic diversity varies with regions, the north and south being less variable. Chlorotype distribution, the phylogenetic tree and historical information suggest that putative refugias in the centre-north region originating from the early Holocene could explain the pattern of variation observed today. By combining the results obtained at nuclear and organellar loci, a strategy of conservation based on evolutionarily significant units is proposed.  相似文献   

15.
Genetic diversity and structure in Fagus crenata were studied by analyzing 14 nuclear microsatellite loci in 23 populations distributed throughout the species’ range. Although population differentiation was very low (F ST = 0.027; R ST = 0.041), both neighbor-joining tree and Bayesian clustering analyses provided clear evidence of genetic divergence between populations along the Japan Sea (Japan Sea lineage) and Pacific (Pacific lineage) sides of Japan, indicating that physical barriers to migration and gene flow, notably the mountain ranges separating the populations along the Japan Sea and Pacific sides, have promoted genetic divergence between these populations. The two lineages of the nuclear genome are generally consistent with those of the chloroplast genome detected in a previous study, with several discrepancies between the two genomes. Within-population genetic diversity was generally very high (average H E = 0.839), but decreased in a clinal fashion from southwest to northeast, largely among populations of the Japan Sea lineage. This geographical gradient may have resulted from the late-glacial and postglacial recolonization to the northeast, which led to a loss of within-population genetic diversity due to cumulative founder effects.  相似文献   

16.
Aim We examined the genetic structure of Quercus garryana to infer post‐glacial patterns of seed dispersal and pollen flow to test the hypotheses that (1) peripheral populations are genetically distinct from core populations and from one another; (2) genetic diversity declines towards the poleward edge of the species’ range; and (3) genetic diversity in the chloroplast genome, a direct measure of seed dispersal patterns, declines more sharply with increasing latitude than diversity in the nuclear genome. We address our findings in the context of known historical oak distribution from pollen core data derived from previously published research. Location Oak–savanna ecosystems from southern Oregon, USA (core populations/non‐glaciated range) northward to Vancouver Island, British Columbia, Canada (peripheral populations/glaciated range). Methods We genotyped 378 trees from 22 sites with five chloroplast and seven nuclear microsatellite loci. For both sets of markers, we estimated genetic diversity and differentiation using an analysis of molecular variance and generated Mantel correlograms to detect genetic and geographical distance correlations. For the nuclear markers, we also used a Bayesian approach to infer population substructure. Results There was a large degree of population differentiation revealed by six chloroplast haplotypes, with little (≤ 3) or no haplotype diversity within sites. Peripheral island locations shared the same, maternally inherited chloroplast haplotype, whereas locations in mainland Washington had greater haplotype diversity. In contrast, genetic diversity of the nuclear markers was high at all locations sampled. Populations clustered into two groups and were significantly positively correlated over large spatial scales (≤ 200 km), although allele richness decreased significantly with latitude. Population substructure was observed between core and peripheral populations because rare alleles were absent in peripheral localities and common allele frequencies differed. Main conclusions The observed pattern of chloroplast haplotype loss at the northern periphery suggests restricted seed dispersal events from mainland sites to peripheral islands. This pattern was unexpected, however, as refugial oak populations remained near the current post‐glacial range even during the Last Glacial Maximum. Using nuclear markers, we found high within‐population diversity and population differentiation only over large spatial scales, suggesting that pollen flow is relatively high among populations.  相似文献   

17.
  • We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.
  • We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.
  • Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).
  • Despite large heterogeneities caused by genus‐specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species‐rich tropical forests.
  相似文献   

18.
The genetic variation within and between 13 populations (385 individuals) of Pinus uncinata was analyzed with ten chloroplast microsatellite markers. Both the infinite allele mutation and stepwise mutation model (SMM) have been applied to the analysis of the genetic structure and the geographical distribution of haplotypic variation. High level of genetic diversity and low but significant differentiation among compared population were found. Three marginal populations, Sierra de Cebollera, Margaride Mountains and Sierra de Gúdar are strongly differentiated from the rest. Mutations following SMM-like process contributed significantly to the regional differentiation. The pattern of genetic structure observed in mountain pine is common in conifers with a wide distribution range. Lack of significant genetic structuring may be a result of a recent fragmentation of a historically larger population and/or interspecific hybridization and introgression. The southernmost populations from the Sierra Cebollera and the Sierra de Gúdar are the most genetically distinct. This suggests a long period of spatial isolation and/or origin from different ancestral populations.  相似文献   

19.
In southern Arizona the columnar cactus, Lophocereus schottii, inhabits desert riparian environments. Reproduction in this part of its range is predominantly asexual and occurs by either the dispersal of stems in the immediate vicinity of parents or the long-distance transport of detached stem pieces downstream by floodwaters. Genetic diversity and clonal structure of eight populations of L. schottii in Organ Pipe Cactus National Monument, Arizona, were examined. In all populations ramets were mapped and stem tissue from each ramet was examined electrophoretically. At the species level, 44.4% of the loci were polymorphic and the genetic diversity was 0.145. Within populations, the mean proportion of polymorphic loci and genetic diversity were 34.4% and 0.126%, respectively. Although most of the allozyme variation was within populations, appreciable heterogeneity was found among populations (GST = 0.130). Genetic and genotypic diversity was greatest in three of the four populations located in the principal area of L. schottii occurrence in the monument. Genotypic diversity was lowest in the smallest population and in the most isolated population. Ramets in all populations were spatially aggregated. Plant pairs with identical multilocus genotypes were usually ≤ 10 m apart, but some widely separated individuals had identical genotypes. Occasional long-distance dispersal of stems and the periodic recruitment of seedlings have caused genets to intermingle, promoting outcrossing and maintaining genetic diversity.  相似文献   

20.
Drier periods from the late Pleistocene and early Holocene have been hypothesized to have caused the disappearance of various rainforest species over large geographical areas in South America and restricted the extant populations to mesic sites. Subsequent improvement in climatic conditions has been associated with recolonization. Changes in population size associated with these extinction-recolonization events should have affected genetic diversity within species. However, these historical hypotheses and their genetic consequences have rarely been tested in South America. Here, we examine the diversity of the chloroplast and nuclear genomes in a Neotropical rainforest tree species, Vouacapoua americana (Leguminosae, Caesalpinioideae) in French Guiana. The chloroplast diversity was analyzed using a polymerase chain reaction-restriction fragment length polymorphism method (six pairs of primers) in 29 populations distributed over most of French Guiana, and a subset of 17 populations was also analyzed at nine polymorphic microsatellite loci. To determine whether this species has experienced extinction-recolonization, we sampled populations in areas supposedly not or only slightly affected by climatic changes, where the populations would not have experienced frequent extinction, and in areas that appear to have been recently recolonized. In the putatively recolonized areas, we found patches of several thousands of hectares homogeneous for chloroplast variation that can be interpreted as the effect of recolonization processes from several geographical origins. In addition, we observed that, for both chloroplast and nuclear genomes, the populations in newly recolonized areas exhibited a significantly smaller allelic richness than others. Controlling for geographic distance, we also detected a significant correlation between chloroplast and nuclear population differentiation. This result indicates a cytonuclear disequilibrium that can be interpreted as a historical signal of a genetic divergence between fragmented populations. In conclusion, the spatial genetic structure of contemporary V. americana populations shows evidence that this species has experienced large extinction-recolonization events, which were possibly caused by past climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号