首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fructose-1,6-bisphosphatase was precipitated with purified rabbit antiserum from extracts of 32P-orthophosphate labelled yeast cells, submitted to SDS polyacrylamide gel electrophoresis, extracted from the gels and counted for radioactivity due to 32P incorporation. Fructose-1,6-bisphosphatase from glucose starved yeast cells contained a very low 32P label. During 3 min treatment of the glucose starved cells with glucose the 32P-label increased drastically. Subsequent incubation of the cells in an acetate containing, glucose-free medium led to a label which was again low. Analysis for phosphorylated amino acids in the immunpprecipitated fructose-1,6-bisphosphatase protein from the 3 min glucose-inactivated cells exhibited phospho-serine as the only labelled phosphoamino acid. These data demonstrate a phosphorylation of a serine residue of fructose-1,6-bisphosphatase during this 3 min glucose treatment of glucose starved cells. A concomitant about 60 % inactivation of the enzyme had been shown to occur. The data in addition show a release of the esterified phosphate from the enzyme upon incubation of cells in a glucose-free medium, a treatment which leads to peactivation of enzyme activity. A protein kinase and a protein phosphatase catalysing this metabolic interconversion of fructose-1,6-bisphosphatase are postulated. It is assumed that metabolites accumulating after the addition of glucose exert a positive effect on the kinase activity and/or have a negative effect on the phosphatase activity. A role of the enzymic phosphorylation of fructose-1,6-bisphosphatase in the initiation of complete proteolysis of the enzyme during “catabolite inactivation” is discussed.  相似文献   

2.
Incorporation of 32P into yeast fructose-1,6-bisphosphatase (EC 3.1.3.11) was observed after addition of glucose to a cell suspension incubated with (32P)orthophosphoric acid. The 32P counts were coincident with the enzyme band when immunoprecipitates were subjected to sodium dodecyl sulfate disc gel electrophoresis. The incorporation of phosphate was associated with a decrease in enzyme activity. Approximately 1 mol of phosphate was incorporated/mol of enzyme. The phosphate is bound to the enzyme in a phosphoester linkage with a serine residue. Release of 32P accompanying enzyme reactivation was observed both in vivo and in cell-free extracts.  相似文献   

3.
Fructose-1,6-bisphosphatase purified from Saccharomyces cerevisiae is phosphorylated in vitro by a cAMP-dependent protein kinase. The phosphorylation reaction incorporates 1 mol of phosphate/mol of enzyme and is greatly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate acts upon fructose-1,6-bisphosphatase, not on the protein kinase. The phosphorylation of fructose 1,6-bisphosphatase lowers its activity by about 50%. The characteristics of the phosphorylation reaction in vitro show that this modification is responsible for the inactivation of fructose-1,6-bisphosphatase observed in vivo.  相似文献   

4.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

5.
Fructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae has properties similar to other gluconeogenic fructose-1,6-bisphosphatases, but an unusual characteristic of the yeast enzyme is that it can be phosphorylated in vitro by cAMP-dependent protein kinase. Phosphorylation also occurs in vivo, presumably as part of a signalling mechanism for the enzyme's degradation. To probe the structural basis for the phosphorylation of yeast fructose-1,6-bisphosphatase, we have developed an improved procedure for the purification of the enzyme and then performed sequence studies with the in vitro-phosphorylated protein as well as with tryptic and chymotryptic peptides containing the phosphorylation site. As a result of these studies, we have determined that yeast fructose-1,6-bisphosphatase has the following 24-residue NH2-terminal amino acid sequence: Pro-Thr-Leu-Val-Asn-Gly-Pro-Arg-Arg-Asp-Ser-Thr-Glu-Gly- Phe-Asp-Thr-Asp-Ile-Ile-Thr-Leu-Pro-Arg. The site of phosphorylation is located at Ser-11 in the above sequence. The amino acid sequence around the site of phosphorylation contains the sequence - Arg-Arg-X-Ser- associated with many of the better substrates of cAMP-dependent protein kinase. The sequence of residues 15-24 above is highly homologous with the sequence of residues 6-15 of pig kidney fructose-1,6-bisphosphatase, showing 7 out of 10 residues in identical positions. The yeast enzyme, however, has a dissimilar NH2-terminal region which extends beyond the NH2 terminus of mammalian fructose-1,6-bisphosphatases and contains a unique phosphorylation site.  相似文献   

6.
7.
The fructose-1,6-bisphosphatase gene was used with multicopy plasmids to study rapid reversible and irreversible inactivation after addition of glucose to derepressed Saccharomyces cerevisiae cells. Both inactivation systems could inactivate the enzyme, even if 20-fold over-expressed. The putative serine residue, at which fructose-1,6-bisphosphatase is phosphorylated, was changed to an alanine residue without notably affecting the catalytic activity. No rapid reversible inactivation was observed with the mutated enzyme. Nonetheless, the modified enzyme was still irreversibly inactivated, clearly demonstrating that phosphorylation is an independent regulatory circuit that reduces fructose-1,6-bisphosphatase activity within seconds. Furthermore, irreversible glucose inactivation was not triggered by phosphorylation of the enzyme.  相似文献   

8.
Immunoblotting was used to study whether proteolytic degradation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in yeast cells during catabolite inactivation occurs intra- or extravacuolarly. The 40-kDa subunits of both the phosphorylated and the non-phosphorylated fructose-1,6-bisphosphatase are rapidly degraded by an extract from isolated vacuoles to a 32-kDa intermediate which accumulates and is then slowly further degraded. However, in intact cells, neither the 32-kDa nor any other intermediate reacting with the fructose-1,6-bisphosphatase antibodies is observed following glucose-induced degradation of the enzyme. These observations are discussed as evidence against intravacuolar degradation of fructose-1,6-bisphosphatase during proteolytic catabolite inactivation.  相似文献   

9.
Phosphorylation of fructose-1,6-bisphosphatase with cyclic AMP-dependent protein kinase from yeast is accompanied by a 50% decrease in the catalytic activity (Pohlig, G. and Holzer, H. (1985) J. Biol. Chem. 260, 13818-13823). Using reactivation of phoshorylated fructose-1,6-bisphosphatase as assay, a protein phosphatase was about 2,000-fold purified to electrophoretic homogeneity from Saccharomyces cerevisiae. Upon incubation with phosphorylated fructose-1,6-bisphosphatase the purified protein phosphatase not only reverses the 50% inactivation caused by phosphorylation, but also the previously observed change in the pH optimum and in the ratio of activity with Mg2+ or Mn2+. The phosphatase is strongly inhibited by heparin and fluoride. L-Carnitine, orthophosphate, pyrophosphate, and succinate inhibit to 50% at concentrations from 1 to 10 mM. The molecular mass of the native phosphatase was found to be 180,000 Da. Sodium dodecyl sulfate-gel electrophoresis suggested four subunits with a molecular mass of 45,000 Da each. Half-maximal activity was observed with 5 mM Mg2+ or Mn2+, the pH optimum of activity was found at pH 7. Using polyclonal antibodies, disappearance of 32P-labeled fructose-1,6-bisphosphatase and concomitant liberation of the expected amount of inorganic [32P] phosphate was demonstrated.  相似文献   

10.
Human liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been purified 1200-fold using a heat treatment step followed by absorption on phosphocellulose at pH 8 and specific elution with buffer containing the substrate (fructose 1,6-bisphosphate) and allosteric effector (AMP). The enzyme is homogeneous in electrophoresis in polyacrylamide gel, in the presence and absence of denaturing agent. It has a molecular weight of 144 000 and is composed of four identical or nearly identical subunits. Fluorescence spectra indicate that the enzyme does not contain tryptophan residues. The pH optimum is 7.5 and the Km is determined as 0.8 microM. The enzyme is inhibited by AMP in cooperative manner with a K0 x 5 of 6 microM.  相似文献   

11.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

12.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

13.
Fructose-1,6-bisphosphatase (EC 3.1.3.11) activity increased markedly (greater than 10-fold) upon illumination of wheat leaves. Darkening caused a relatively slow but complete reversal of light activation. The effects of O2 and CO2 concentration and light intensity on fructose-bisphosphatase activation were measured. In ratelimiting light, 2% O2 stimulated enzyme activity, whereas varying the CO2 concentration had little effect. In saturating light, lowering the oxygen tension had no effect, but CO2 at near-saturating concentrations for photosynthesis inhibited enzyme activity. Dark inactivation of the enzyme was completely prevented by incubation of leaves in N2, but was facilitated by O2, indicating that O2 is the major oxidant in darkened leaves. It is argued that while fructose bisphosphatase is redox-regulated in leaves, modulation of enzyme activity by this mechanism is unlikely to contribute to the regulation of CO2 fixation in leaves.  相似文献   

14.
Yeast fructose-1,6-bisphosphatase (EC 3.1.3.11) immunoprecipitated from glucose-derepressed wild-type cells and subjected to isoelectric focusing, appears as a unique peak, essentially homogeneous and devoid of incorporated phosphate. However, after cell incubation with glucose, two phosphorylated forms are detectable. The isoelectric point of one is higher and of the other is lower than that of the native form. In contrast, in the mutant ABYS1 which is deficient in several vacuolar proteinases (Achstetter, T., Emter, O., Ehmann, C. and Wolf, D.H. (1984) J. Biol. Chem. 259, 13334-13343), only the more acidic phospho form appears after cell incubation with glucose. However, sequence data rule out the possibility that limited proteolysis is the event responsible for the appearance of the more basic form of the phosphoenzyme. Nevertheless, time courses of glucose-induced inactivation of fructose-1,6-bisphosphatase show that the enzyme undergoes a substantially slower inactivation in the ABYS1 mutant as compared to the wild-type. These findings point to a degradative mechanism involving, besides the well-known phosphorylation, an additional as yet unknown modification which probably sensitizes the enzyme to proteolytic attack; furthermore, the enzyme responsible for such a modification seems to require one or more of the vacuolar proteinases missing in the mutant for its maturation.  相似文献   

15.
Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.  相似文献   

16.
C Wills  T Martin  T Melham  D Walker 《FEBS letters》1985,183(1):155-160
An activity gel assay for fructose-1,6-bisphosphatase (FBP), the enzyme catalyzing the final step in gluconeogenesis in yeast, has been developed which can be used in conjunction with spectrophotometric assays to show that it is tightly co-regulated with the inducible alcohol dehydrogenase, ADHII. Both enzymes are repressed coordinately in aerobically grown yeast by the addition of high levels of glucose or ethanol, and induced on minimal medium by the addition of yeast extract. A mutant deficient in FBP segregates independently of the ADHII structural gene locus. This phenomenon is of interest because of the discovery of Ciriacy [(1979) Mol. Gen. Genet. 176, 427-431] of mutants (ccr, or carbon catabolite repression) which repress both FBP and ADHII simultaneously, along with several other enzymes.  相似文献   

17.
18.
The question of how the loss of regulatory mechanisms for a metabolic enzyme would affect the fitness of the corresponding organism has been addressed. For this, the fructose-1,6-bisphosphatase (FbPase) from Saccharomyces cerevisiae has been taken as a model. Yeast strains in which different controls on FbPase (catabolite repression and inactivation; inhibition by fructose-2,6-bisphosphate and AMP) have been removed have been constructed. These strains express during growth on glucose either the native yeast FbPase, the Escherichia coli FbPase which is insensitive to inhibition by fructose-2,6-bisphosphate, or a mutated E. coli FbPase with low sensitivity to AMP. Expression of the heterologous FbPases increases the fermentation rate of the yeast and its generation time, while it decreases its growth yield. In the strain containing high levels of an unregulated bacterial FbPase, cycling between fructose-6-phosphate and fructose-1,6-bisphosphate reaches 14%. It is shown that the regulatory mechanisms of FbPase provide a slight but definite competitive advantage during growth in mixed cultures.  相似文献   

19.
Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase   总被引:4,自引:0,他引:4  
The amino acid sequence of the spinach chloroplast fructose-1,6-bisphosphatase (FBPase) subunit has been determined. Placement of the 358 residues in the polypeptide chain was based on automated Edman degradation of the intact protein and of peptides obtained by enzymatic or chemical cleavage. The sequence of spinach chloroplast FBPase shows clear homology (ca. 40%) to gluconeogenic (mammalian, yeast, and Escherichia coli) fructose-1,6-bisphosphatases and 80% homology with the wheat chloroplast enzyme. The two chloroplast enzymes show near the middle of the structure a unique sequence insert probably involved in light-dependent regulation of the chloroplast FBPase enzyme activity. This sequence insert contains two cysteines separated by only 4 amino acid residues, a characteristic feature of some enzymes containing redox-active cysteines. The recent X-ray crystallographic resolution of pig kidney FBPase (H. Ke, C. M. Thorpe, B. A. Seaton, F. Marcus, and W. N. Lipscomb, 1989, Proc. Natl. Acad. Sci. USA 86, 1475-1479) has allowed the discussion of the amino acid sequence of spinach chloroplast FBPase in structural terms. It is to be noted that most of pig kidney FBPase residues shown to be either at (or close to) the sugar bisphosphate binding site or located at the negatively charged metal binding pocket are conserved in the chloroplast enzyme. The unique chloroplast FBPase insert presumably involved in light-dependent activation of the enzyme via a thioredoxin-linked mechanism can be accommodated in the surface of the FBPase molecule.  相似文献   

20.
The presence of FBPase was confirmed in both human and ovine white adipose tissue in metabolically significant amounts. The partially purified enzyme from ovine adipose tissue exhibited kinetic properties very similar to other mammalian FBPases (pH optimum of 7.5, absolute requirement for divalent metal ions and strong inhibition by both AMP and F-2,6-P2). The micromolar S0.5 value obtained suggests that the enzyme may be of physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号