首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chlorine kinetic isotope effect (KIE) on the dehalogenation of 4-chlorobenzoyl-CoA catalyzed by 4-chlorobenzoyl-CoA dehalogenase has been measured at room temperature and optimal pH. The measured value of (37)k = 1.0090 +/- 0.0006 is larger than the KIEs recently measured for haloalkane and fluoroacetate dehalogenase. This indicates that the transition state for dissociation of chloride ion from the Meisenheimer intermediate is sensitive to the chlorine isotopic substitution. Simple modeling suggests that this sensitivity originates in the high isotopic sensitivity of the C-Cl bond bending modes.  相似文献   

2.
Wu J  Xu D  Lu X  Wang C  Guo H  Dunaway-Mariano D 《Biochemistry》2006,45(1):102-112
It is well established that electrostatic interactions play a vital role in enzyme catalysis. In this work, we report theory-guided mutation experiments that identified strong electrostatic contributions of a remote residue, namely, Glu232 located on the adjacent subunit, to 4-chlorobenzoyl-CoA dehalogenase catalysis. The Glu232Asp mutant was found to bind the substrate analogue 4-methylbenzoyl-CoA more tightly than does the wild-type dehalogenase. In contrast, the kcat for 4-chlorobenzoyl-CoA conversion to product was reduced 10000-fold in the mutant. UV difference spectra measured for the respective enzyme-ligand complexes revealed an approximately 3-fold shift in the equilibrium of the two active site conformers away from that inducing strong pi-electron polarization in the ligand benzoyl ring. Increased substrate binding, decreased ring polarization, and decreased catalytic efficiency indicated that the repositioning of the point charge in the Glu232Asp mutant might affect the orientation of the Asp145 carboxylate with respect to the substrate aromatic ring. The time course for formation and reaction of the arylated enzyme intermediate during a single turnover was measured for wild-type and Glu232Asp mutant dehalogenases. The accumulation of arylated enzyme in the wild-type dehalogenase was not observed in the mutant. This indicates that the reduced turnover rate in the mutant is the result of a slow arylation of Asp145, owing to decreased efficiency in substrate nucleophilic attack by Asp145. To rationalize the experimental observations, a theoretical model is proposed, which computes the potential of mean force for the nucleophilic aromatic substitution step using a hybrid quantum mechanical/molecular mechanical method. To this end, the removal or reorientation of the side chain charge of residue 232, modeled respectively by the Glu232Gln and Glu232Asp mutants, is shown to increase the rate-limiting energy barrier. The calculated 23.1 kcal/mol free energy barrier for formation of the Meisenheimer intermediate in the Glu232Asp mutant represents an increase of 6 kcal/mol relative to that of the wild-type enzyme, consistent with the 5.6 kcal/mol increase calculated from the difference in experimentally determined rate constants. On the basis of the combination of the experimental and theoretical evidence, we hypothesize that the Glu232(B) residue contributes to catalysis by providing an electrostatic force that acts on the Asp145 nucleophile.  相似文献   

3.
A metagenomic approach was taken to investigate the genetic basis for the ability of an anaerobic consortium to grow on either 4-chlorobenzoate or 4-bromobenzoate under denitrifying conditions. Degenerate PCR primers were designed for the family of 4-chlorobenzoyl-CoA dehalogenase genes. The primers were utilized to screen a metagenome library and two overlapping clones were identified which yield a PCR product. The complete sequence of one metagenome clone was determined and genes encoding 4-chlorobenzoyl-CoA ligase (FcbA) and 4-chlorobenzoyl-CoA dehalogenase (FcbB) were identified. Analysis of the ORFs present in the nucleotide sequence suggests that the metagenome clone originated from an uncultured denitrifying microorganism belonging to the Betaproteobacteria. Interestingly, unlike similar gene clusters reported in aerobes, a gene encoding 4-hydroxybenzoyl-CoA thioesterase was not present in the gene cluster. This suggests that 4-hydroxybenzoyl-CoA is further degraded via the anaerobic reduction pathway in the corresponding microorganism instead of through thioester hydrolysis to yield 4-hydroxybenzoate.  相似文献   

4.
F L?ffler  R Müller 《FEBS letters》1991,290(1-2):224-226
The intermediate in the reaction catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 was identified as 4-chlorobenzoyl-CoA. One component of 4-chlorobenzoate dehalogenase worked as a a 4-chlorobenzoyl-CoA ligase catalyzing the formation of 4-chlorobenzoyl-CoA from 4-chlorobenzoate, coenzyme A and ATP. This intermediate was detected spectrophotometrically and by HPLC. 4-chlorobenzoyl-CoA was the substrate for the dehalogenase component, which catalyzed the conversion to 4-hydroxybenzoate with concomitant release of coenzyme A.  相似文献   

5.
The intermediate in the reaction catalysed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 was identified as 4-chlorobenzoyl-CoA. One component of 4-chlorobenzoate debalogenase worked as a a 4-chlorobenzoyl-CoA ligase catalysing the formation of 4-chlorobenzoyl-CoA from 4-chlorobenzoate, coenzyme A and ATP. This intermediate was detected spectrophotometrically and by HPLC. 4-chlorobenzoyl-CoA was the substrate for the dehalogenase component, which catalysed the conversion to 4-hydroxybenzoate with concomitant release or coenzyme A.  相似文献   

6.
Corynebacterium sepedonicum KZ-4, described earlier as a strain capable of growth on 2,4-dichlorobenzoate (G.M. Zaitsev and Y.N. Karasevich, Mikrobiologiya 54:356-369, 1985), is known to metabolize this substrate via 4-hydroxybenzoate and protocatechuate, and evidence consistent with an initial reductive dechlorination step to form 4-chlorobenzoate was found in another coryneform bacterium, strain NTB-1 (W.J.J. van den Tweel, J.B. Kok, and J.A.M. de Bont, Appl. Environ. Microbiol. 53:810-815, 1987). 2-Chloro-4-fluorobenzoate was found to be converted stoichiometrically to 4-fluorobenzoate by resting cells of strain KZ-4, compatible with a reductive process. Experiments with cell extracts demonstrated that Mg - ATP and coenzyme A (CoA) were required to stimulate reductive dehalogenation, consistent with the intermediacy of 2-chloro-4-fluoro-benzoyl-CoA and 2,4-dichlorobenzoyl-CoA thioesters. 2,4-Dichlorobenzoyl-CoA was shown to be converted to 4-chlorobenzoyl-CoA in a novel NADPH-dependent reaction in extracts of both KZ-4 and NTB-1. In addition to the ligase and reductive dehalogenase activities, hydrolytic 4-chlorobenzoyl-CoA dehalogenase and thioesterase activities, 4-hydroxybenzoate 3-monooxygenase, and protocatechuate 3,4-dioxygenase activities were demonstrated to be present in the soluble fraction of KZ-4 extracts following ultracentrifugation. We propose that the pathway for 2,4-dichlorobenzoate catabolism in strains KZ-4 and NTB-1 involves formation of 2,4-dichlorobenzoyl-CoA, NADPH-dependent ortho dehalogenation yielding 4-chlorobenzoyl-CoA, hydrolytic removal of chlorine from the para position to generate 4-hydroxybenzoyl-CoA, hydrolysis to form 4-hydroxybenzoate, oxidation to yield protocatechuate, and oxidative ring cleavage.  相似文献   

7.
Uracil-DNA glycosylase (UDG) removes uracil generated by the deamination of cytosine or misincorporation of deoxyuridine monophosphate. Within the UDG superfamily, a fifth UDG family lacks a polar residue in the active-site motif, which mediates the hydrolysis of the glycosidic bond by activation of a water molecule in UDG families 1-4. We have determined the crystal structure of a novel family 5 UDG from Thermus thermophilus HB8 complexed with DNA containing an abasic site. The active-site structure suggests this enzyme uses both steric force and water activation for its excision reaction. A conserved asparagine residue acts as a ligand to the catalytic water molecule. The structure also implies that another water molecule acts as a barrier during substrate recognition. Based on no significant open-closed conformational change upon binding to DNA, we propose a "slide-in" mechanism for initial damage recognition.  相似文献   

8.
The hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases (PTPases) was studied with the aim of providing a mechanistic framework for the reactions of this important class of substrate analogues. O-arylphosphorothioates are hydrolyzed 2 to 3 orders of magnitude slower than O-aryl phosphates by PTPases. This is in contrast to the solution reaction where phosphorothioates display 10-60-fold higher reactivity than the corresponding oxygen analogues. Kinetic analyses suggest that PTPases utilize the same active site and similar kinetic and chemical mechanisms for the hydrolysis of O-arylphosphorothioates and O-aryl phosphates. Thio substitution has no effect on the affinity of substrate or product for the PTPases. Bronsted analyses suggest that like the PTPase-catalyzed phosphoryl transfer reaction the transition state for the PTPase-catalyzed thiophosphoryl transfer is highly dissociative, similar to that of the corresponding solution reaction. The side chain of the active-site Arg residue forms a bidentate hydrogen bond with two of the terminal phosphate oxygens in the ground state and two of the equatorial oxygens in a transition state analog complex with vanadate [Denu et al. (1996) Proc. Natl. Acad. Sci. USA 93, 2493-2498; Zhang, M. et al. (1997) Biochemistry 36, 15-23; Pannifer et al. (1998) J. Biol. Chem. 273, 10454-10462]. Replacement of the active-site Arg409 in the Yersinia PTPase by a Lys reduces the thio effect by 54-fold, consistent with direct interaction and demonstrating strong energetic coupling between Arg409 and the phosphoryl oxygens in the transition state. These results suggest that the large thio effect observed in the PTPase reaction is the result of inability to achieve precise transition state complementarity in the enzyme active site with the larger sulfur substitution.  相似文献   

9.
The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic and basic amino acid side chains for use in proton shuttling. It is hypothesized that this active site template can be tailored to catalyze a wide range of chemical transformations through strategic positioning of acid/base residues among the active site stations. To test this hypothesis, the active site of one member of the 2-enoyl-CoA hydratase/isomerase family, 4-chlorobenzoyl-CoA dehalogenase, was altered by site-directed mutagenesis to include the two glutamate residues functioning in acid/base catalysis in a second family member, crotonase. Catalysis of the syn hydration of crotonyl-CoA, absent in the wild-type 4-chlorobenzoyl-CoA dehalogenase, was shown to occur with the structurally modified 4-chlorobenzoyl-CoA dehalogenase at kcat = 0.06 s-1 and Km = 50 microM.  相似文献   

10.
Acetylcholine hydrolysis by acetylcholinesterase is inhibited at high substrate concentrations. To determine the residues involved in this phenomenon, we have mutated most of the residues lining the active-site gorge but mutating these did not completely eliminate hydrolysis. Thus, we analyzed the effect of a nonhydrolysable substrate analogue on substrate hydrolysis and on reactivation of an analogue of the acetylenzyme. Analyses of various models led us to propose the following sequence of events: the substrate initially binds at the rim of the active-site gorge and then slides down to the bottom of the gorge where it is hydrolyzed. Another substrate molecule can bind to the peripheral site: (a) when the choline is still inside the gorge - it will thereby hinder its exit; (b) after choline has dissociated but before deacetylation occurs - binding at the peripheral site increases deacetylation rate but (c) if a substrate molecule bound to the peripheral site slides down to the bottom of the active-site before the catalytic serine is deacetylated, its new position will prevent the approach of water, thus blocking deacetylation.  相似文献   

11.
The probable modes of binding of Methyl--alpha (and beta)-D-glucopyranosides and some of their derivatives to concanavalin A have been proposed from theoretical studies. Theory predicts that beta-MeGlcP can bind to ConA in three different modes whereas alpha-MeGlcP can bind only in one mode. beta-MeGlcP in its most favourable mode of binding differs from alpha-MeGlcP in its alignment in the active-site of the lectin where it binds in a flipped or inverted orientation. Methyl substitution at the C-2 atom of the alpha-MeGlcP does not significantly affect the possible orientations of the sugar in the active-site of the lectin. Methyl substitution at C-3 or C-4, however, affects the allowed orientations drastically leading to the poor inhibiting power of Methyl-3-O-methyl-alpha-D-glucopyranoside and the inactivity of Methyl-4-O-methyl-alpha-D-glycopyranoside. These studies suggest that the increased activity of the alpha-MeGlcP over beta-MeGlcP may be due to the possibility of formation of better hydrogen bonds and to hydrophobic interactions rather than to steric factors as suggested by earlier workers. These models explain the available NMR and other binding studies.  相似文献   

12.
The gene encoding an esterase (PsyEst) of Psychrobacter sp. Ant300, a psychrophilic bacterium isolated from Antarctic soil, was cloned, sequenced, and expressed in Escherichia coli. PsyEst, which is a member of hormone-sensitive lipase (HSL) group of the lipase/esterase family, is a cold-active, themolabile enzyme with high catalytic activity at low temperatures (5-25 degrees C), low activation energy (e.g., 4.6 kcal/mol for hydrolysis of p-nitrophenyl butyrate), and a t(1/2) value of 16 min for thermal inactivation during incubation at 40 degrees C and pH 7.9. A three-dimensional structural model of PsyEst predicted that Gly(244) was located in the loop near the active site of PsyEst and that substitution of this amino-acid residue by proline should potentially rigidify the active-site environment of the enzyme. Thus, we introduced the Gly(244)-->Pro substitution into the enzyme. Stability studies showed that the t(1/2) value for thermal inactivation of the mutant during incubation at 40 degrees C and pH 7.9 was 11.6 h, which was significantly greater than that of the wild-type enzyme. The k(cat)/K(m) value of the mutant was lower for all substrates examined than the value of the wild type. Moreover, this amino-acid substitution caused a shift of the acyl-chain length specificity of the enzyme toward higher preference for short-chain fatty acid esters. All of these observations could be explained in terms of a decrease in active-site flexibility brought about by the mutation and were consistent with the hypothesis that cold activity and thermolability arise from local flexibility around the active site of the enzyme.  相似文献   

13.
In the light-driven bacteriorhodopsin proton pump, the first proton transfer step is from the retinal Schiff base to a nearby carboxylate group. The mechanism of this transfer step is highly controversial, in particular whether a direct proton jump is allowed. Here, we review the structural and energetic determinants of the direct proton transfer path computed by using a combined quantum mechanical/molecular mechanical approach. Both protein flexibility and electrostatic interactions play an important role in shaping the proton transfer energy profile. Detailed analysis of the energetics of putative transitions in the first half of the photocycle focuses on two elements that determine the likelihood that a given configuration of the active site is populated during the proton-pumping cycle. First, the rate-limiting barrier for proton transfer must be consistent with the kinetics of the photocycle. Second, the active-site configuration must be compatible with a productive overall pumping cycle.  相似文献   

14.
Abstract

The probable modes of binding of Methyl—α (and β)-D-glucopyranosides and some of their derivatives to concanavalin A have been proposed from theoretical studies. Theory predicts that βMeGlcP can bind to ConA in three different modes whereas α-MeGlcP can bind only in one mode. βMeGlcP in its most favourable mode of binding differs from α-MeGlcP in its alignment in the active-site of the lectin where it binds in a flipped or inverted orientation. Methyl substitution at the C-2 atom of the α-MeGlcP does not significantly affect the possible orientations of the sugar in the active-site of the lectin. Methyl substitution at C-3 or C-4, however, affects the allowed orientations drastically leading to the poor inhibiting power of Methyl-3-O-methyl-α-D-glucopyranoside and the inactivity of Methyl-4-O-methyl-α-D-glucopyranoside. These studies suggest that the increased activity of the α-MeGlcP over β-MeGlcP may be due to the possibility of formation of better hydrogen bonds and to hydrophobic interactions rather than to steric factors as suggested by earlier workers. These models explain the available NMR and other binding studies.  相似文献   

15.
We present results of the modeling for the hydrolysis reaction of guanosine triphosphate (GTP) in the RAS-GAP protein complex using essentially ab initio quantum chemistry methods. One of the approaches considers a supermolecular cluster composed of 150 atoms at a consistent quantum level. Another is a hybrid QM/MM method based on the effective fragment potential technique, which describes interactions between quantum and molecular mechanical subsystems at the ab initio level of the theory. Our results show that the GTP hydrolysis in the RAS-GAP protein complex can be modeled by a substrate-assisted catalytic mechanism. We can locate a configuration on the top of the barrier corresponding to the transition state of the hydrolysis reaction such that the straightforward descents from this point lead either to reactants GTP+H(2)O or to products guanosine diphosphate (GDP)+H(2)PO(4)(-). However, in all calculations such a single-step process is characterized by an activation barrier that is too high. Another possibility is a two-step reaction consistent with formation of an intermediate. Here the Pgamma-O(Pbeta) bond is already broken, but the lytic water molecule is still in the pre-reactive state. We present arguments favoring the assumption that the first step of the GTP hydrolysis reaction in the RAS-GAP protein complex may be assigned to the breaking of the Pgamma-O(Pbeta) bond prior to the creation of the inorganic phosphate.  相似文献   

16.
The origins of enzyme specificity are well established. However, the molecular details underlying the ability of a single active site to promiscuously bind different substrates and catalyze different reactions remain largely unknown. To better understand the molecular basis of enzyme promiscuity, we studied the mammalian serum paraoxonase 1 (PON1) whose native substrates are lipophilic lactones. We describe the crystal structures of PON1 at a catalytically relevant pH and of its complex with a lactone analogue. The various PON1 structures and the analysis of active-site mutants guided the generation of docking models of the various substrates and their reaction intermediates. The models suggest that promiscuity is driven by coincidental overlaps between the reactive intermediate for the native lactonase reaction and the ground and/or intermediate states of the promiscuous reactions. This overlap is also enabled by different active-site conformations: the lactonase activity utilizes one active-site conformation whereas the promiscuous phosphotriesterase activity utilizes another. The hydrolysis of phosphotriesters, and of the aromatic lactone dihydrocoumarin, is also driven by an alternative catalytic mode that uses only a subset of the active-site residues utilized for lactone hydrolysis. Indeed, PON1's active site shows a remarkable level of networking and versatility whereby multiple residues share the same task and individual active-site residues perform multiple tasks (e.g., binding the catalytic calcium and activating the hydrolytic water). Overall, the coexistence of multiple conformations and alternative catalytic modes within the same active site underlines PON1's promiscuity and evolutionary potential.  相似文献   

17.
We previously demonstrated that the substitution of the autolysis loop (residues 143-154 in chymotrypsin numbering) of APC with the corresponding loop of trypsin (APC-Tryp 143-154) has no influence on the proteolytic activity of the protease toward fVa, however, this substitution increases the reactivity of APC with plasma inhibitors so that the mutant exhibits no anticoagulant activity in plasma. To further investigate the role of the autolysis loop in APC and determine whether this loop is a target for modulation by protein S, we evaluated the activity of APC-Tryp 143-154 toward fVa and several plasma inhibitors both in the absence and presence of protein S. Furthermore, we evaluated the active-site topography of APC-Tryp 143-154 by determining the average distance of the closest approach (L) between a fluorescein dye tethered to a tripeptide inhibitor, attached to the active-site of APC-Tryp 143-154, and octadecylrhodamine dyes incorporated into PCPS vesicles both in the absence and presence of protein S. The activity of APC-Tryp 143-154 toward fVa was identical to that of wild-type APC both in the presence and absence of protein S. However, the reactivity of APC-Tryp 143-154 with plasma inhibitors was preferentially improved independent of protein S. The FRET analysis revealed a dramatic change in the active-site topography of APC both in the absence and presence of protein S. Anisotropy measurements revealed that the fluorescein dye has a remarkable degree of rotational freedom in the active-site of APC-Tryp 143-154. These results suggest that the autolysis loop of APC may not be a target for modulation by protein S. This loop, however, plays a critical role in restricting both the specificity and spatial environment of the active-site groove of APC.  相似文献   

18.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl-CoA), (ii) reductively dehalogenating 3-chlorobenzoyl-CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

19.
The beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus (CelB) is the most thermostable and thermoactive family 1 glycosylhydrolase described to date. To obtain more insight in the molecular determinants of adaptations to high temperatures and study the possibility of optimizing low-temperature activity of a hyperthermostable enzyme, we generated a library of random CelB mutants in Escherichia coli. This library was screened for increased activity on p-nitrophenyl-beta-D-glucopyranoside at room temperature. Multiple CelB variants were identified with up to 3-fold increased rates of hydrolysis of this aryl glucoside, and 10 of them were characterized in detail. Amino acid substitutions were identified in the active-site region, at subunit interfaces, at the enzyme surface, and buried in the interior of the monomers. Characterization of the mutants revealed that the increase in low-temperature activity was achieved in different ways, including altered substrate specificity and increased flexibility by an apparent overall destabilization of the enzyme. Kinetic characterization of the active-site mutants showed that in all cases the catalytic efficiency at 20 degrees C on p-nitrophenyl-beta-D-glucose, as well as on the disaccharide cellobiose, was increased up to 2-fold. In most cases, this was achieved at the expense of beta-galactosidase activity at 20 degrees C and total catalytic efficiency at 90 degrees C. Substrate specificity was found to be affected by many of the observed amino acid substitutions, of which only some are located in the vicinity of the active site. The largest effect on substrate specificity was observed with the CelB variant N415S that showed a 7.5-fold increase in the ratio of p-nitrophenyl-beta-D-glucopyranoside/p-nitrophenyl-beta-D-galactopyra noside hydrolysis. This asparagine at position 415 is predicted to interact with active-site residues that stabilize the hydroxyl group at the C4 position of the substrate, the conformation of which is equatorial in glucose-containing substrates and axial in galactose-containing substrates.  相似文献   

20.
Zhan CG  Gao D 《Biophysical journal》2005,89(6):3863-3872
The geometries of the transition states, intermediates, and prereactive enzyme-substrate complex and the corresponding energy barriers have been determined by performing hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)- and (+)-cocaine. The energy barriers were evaluated by performing QM/MM calculations with the QM method at the MP2/6-31+G* level and the MM method using the AMBER force field. These calculations allow us to account for the protein environmental effects on the transition states and energy barriers of these enzymatic reactions, showing remarkable effects of the protein environment on intermolecular hydrogen bonding (with an oxyanion hole), which is crucial for the transition state stabilization and, therefore, on the energy barriers. The calculated energy barriers are consistent with available experimental kinetic data. The highest barrier calculated for BChE-catalyzed hydrolysis of (-)- and (+)-cocaine is associated with the third reaction step, but the energy barrier calculated for the first step is close to the highest and is so sensitive to the protein environment that the first reaction step can be rate determining for (-)-cocaine hydrolysis catalyzed by a BChE mutant. The computational results provide valuable insights into future design of BChE mutants with a higher catalytic activity for (-)-cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号