首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although immune reactions against heat shock proteins have been implicated in the pathogenesis of atherosclerosis, conflicting associations between Hsp70, anti-Hsp70 antibody and coronary heart disease (CHD) have been reported. This study assessed whether there is a significant association between extracellular human Hsp70, anti-Hsp70 antibody and acute coronary syndrome (ACS) and stable angina (SA), and examined dynamic changes in Hsp70 and anti-Hsp70 antibody levels induced by acute myocardial infarction (AMI). Plasma Hsp70 and anti-Hsp70 antibody levels in 291 patients with ACS (179 AMI, 112 unstable angina), 126 patients with SA and 417 age and sex-matched healthy subjects, and in 40 patients after admission for AMI, and on day 2, 3, and 7 after the onset of AMI were determined using enzyme-linked immunosorbent assays. Hsp70 levels were significantly higher in ACS and SA and anti-Hsp70 antibody levels were only markedly lower in ACS than controls. After adjustment for traditional CHD risk factors, increasing levels of Hsp70 were significantly associated with an increased risk and severity of ACS (P for trend < 0.001), whereas increasing levels of anti-Hsp70 antibody were associated with a decreased risk of ACS (P for trend = 0.0003). High levels of Hsp70 combined with low levels of anti-Hsp70 antibody had a joint effect on the risk of ACS (OR, 5.14, 95% CI, 3.00-8.79; P < 0.0001). In patients with AMI, Hsp70 levels decreased rapidly from days 1-7 after onset, whereas anti-Hsp70 antibody levels increased in patients with AMI. These findings suggest that higher Hsp70 levels or lower anti-Hsp70 antibody levels are independently associated with a higher risk of ACS. Higher Hsp70 levels and lower anti-Hsp70 antibody levels combine to further increase this risk.  相似文献   

2.
The possibility of using Hsp70 and hsp70 gene polymorphisms as markers of acclimatization was investigated. Volunteers (22) were subjected to an acclimatization regimen and blood analysed for Hsp70 (Hsp72) and hsp70 polymorphisms before and after a heat tolerance test. Physiological parameters denoting acclimatization, or not, were correlated to levels of Hsp70 and combination of hsp70 genes. Only individuals that acclimatized had decreased basal Hsp70 levels and increased ability to induce Hsp70 together with a specific hsp70 genotype combination. We propose that Hsp70 levels (basal vs. induced) with the genotype combination have the potential to be used as markers of acclimatization.  相似文献   

3.
《Cytokine》2015,72(2):139-144
As a potent immune regulator, heat shock protein 70 derived from Mycobacterium tuberculosis (Mtb Hsp70) has adjuvant effect and activates immune cells such as macrophages and dendritic cells (DCs). Although Toll-like receptors (TLRs) are known to involve in DCs activation by Mtb Hsp70, there is still a controversy and the underlying mechanism is not well understood. In this study, we examined whether TRIF and MyD88, the core adaptor molecules for TLRs signaling, regulate Mtb Hsp70-induced DCs activation. Although Mtb Hsp70 produced substantial level of cytokines (IL-6, IL-12p40, and TNF-α) in TRIF-deficient DCs in a dose-dependent manner, each level was significantly lower than that in WT cells. The cytokines production was almost abolished in MyD88-deficient DCs. Consistent with cytokine results, Mtb Hsp70-induced activation of NF-κB and MAPKs was also impaired in both TRIF- and MyD88-deficient DCs, as compared with WT cells. Inhibitor assay revealed that NF-κB, ERK, and JNK, but not p38, regulate Mtb Hsp70-induced production of cytokines. In addition, the up-regulation of co-stimulatory molecules and MHC class II was mostly TRIF-dependent in DCs in response Mtb Hsp70, whereas MyD88 was only partially involved. Finally, mixed leukocytes reaction (MLR) assay revealed that both TRIF and MyD88 are critical for DCs ability promoted by Mtb Hsp70 to differentiate naïve T cells into effector T cells of producing IFN-γ. Our findings suggest that both TRIF and MyD88 are essential for the activation and maturation of DCs in response to Mtb Hsp70.  相似文献   

4.
It has been previously reported that serum levels of 70-kDa heat shock protein (Hsp70) are elevated in peripheral artery disease. The aim of the present study was to examine whether increased serum Hsp70 levels are related to the extent of arterial calcification and standard laboratory parameters of patients with peripheral artery disease, as well as to markers of inflammation (C-reactive protein), atherosclerosis (homocysteine), and calcification (fetuin-a). One hundred eighty chronic atherosclerotic patients with significant carotid stenosis and/or lower extremity vascular disease were enrolled in this cross-sectional study. Systemic atherosclerosis and calcification was assessed by ultrasound (carotid intima–media thickness (IMT), presence of calcification at the abdominal aorta, carotid and femoral bifurcations, and aortic and mitral cardiac valves). Standard serum markers of inflammation, diabetes, renal function, ankle-brachial indexes, and traditional risk factors for atherosclerosis were noted. Serum Hsp70 levels were measured with enzyme-linked immunosorbent assay. Standard laboratory parameters (clinical chemistry), C-reactive protein (CRP), and homocysteine levels were determined by an autoanalyzer using the manufacturer’s kits. Fetuin-a levels were measured by radial immunodiffusion. Patients’ median age was 64 (57–71) years, 69% were men, and 34.5% had diabetes. Serum heat shock protein 70 levels were significantly higher in patients with more severe arterial calcification (p < 0.02) and showed significant positive correlations with serum bilirubin (r = 0.23, p = 0.002) and homocysteine levels (r = 0.18, p = 0.02). Serum Hsp70 did not correlate with body mass index, IMT, CRP, or fetuin-a levels in this cohort. Logistic regression analysis confirmed the association between sHsp70 and calcification score (OR, 2.189; CI, 1.156–4.144, p = 0.016) and this correlation remained significant (OR, 2.264; CI, 1.021–5.020, p = 0.044) after the adjustment for age, sex, eGFR, smoking, CRP, and homocysteine levels. Our data show that serum Hsp70 levels correlate with the severity of atherosclerosis in patients with carotid artery disease and chronic lower limb ischemia. These data support a putative role for plasma Hsp70 in the development of arterial calcification. Nevertheless, further studies are required to investigate the usefulness of circulating Hsp70 level as a marker of atherosclerotic calcification.  相似文献   

5.
Eukaryotic 70 kDa heat shock proteins (Hsp70s) are localized in various cellular compartments and exhibit functions such as protein translocation across membranes, protein folding and assembly. Here we demonstrate that the constitutively expressed members of the yeast cytoplasmic Ssa subfamily, Ssa1/2p, are involved in the transport of the vacuolar hydrolase aminopeptidase 1 from the cytoplasm into the vacuole. The Ssap family members displayed overlapping functions in the transport of aminopeptidase 1. In SSAI and SSAII deletion mutants the precursor of aminopeptidase 1 accumulated in a dodecameric complex that is packaged in prevacuolar transport vesicles. Ssa1/2p was prominently localized to the vacuolar membrane, consistent with the role we propose for Ssa proteins in the fusion of transport vesicles with the vacuolar membrane.  相似文献   

6.
Heat shock proteins (Hsps) hold a dual role depending on their location. Inside cells, they fulfill essential survival functions as molecular chaperones forming complexes with intracellular polypeptides (self or foreign) to help in protein folding, the resolution of protein aggregates and intracellular protein transport. Released from the cell, they act as messengers communicating the cells’ interior protein composition to the immune system for initiation of immune responses against intracellular proteins. Here we describe the mechanisms by which Hsp70, the heat-inducible Hsp70 family member, crosstalks with the immune system. Further, we discuss that clinical hyperthermia could be a way to initiate the immunologic activity of Hsp70 by upregulating its expression and facilitating release through local necrosis.  相似文献   

7.
8.
This study was designed to investigate the expression of heat shock protein 70 (HSP70), after acute moderate intensity exercise, in human peripheral blood leukocytes of trained runners and untrained controls. Ten male long-distance trained runners (TR) and untrained sedentary control subjects (SED) ran for 1 h at 70% of heart rate reserve (HRR). Basal HSP70 expression in TR was usually lower than that in SED, but basal HSP70 gene expression in TR was usually higher than that in SED. Although expression rates of exercise-induced HSP70 in both groups were similar, levels of HSP70 in SED were significantly higher than in TR. Significant increases in leukocytes, neutrophils, and lymphocytes after exercise were observed in both groups, but there were some differences between groups. We conclude that 1 h treadmill running at 70% HRR intensity is a sufficient stimulus to leukocytosis, neutrocytosis, lymphocytosis, and HSP70 proteins and gene expression in leukocytes. Adaptation to training was observed in TR.  相似文献   

9.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   

10.
Mortalin, a member of the Hsp70‐family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe‐S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT‐077. Like other Hsp70‐family members, Mortalin consists of a nucleotide‐binding domain (NBD) and a substrate‐binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide‐binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease‐associated mutation is located on the Mortalin‐NBD surface and may contribute to Mortalin aggregation. We present structure‐based models for how the Mortalin‐NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT‐077. Our structure may contribute to the understanding of disease‐associated Mortalin mutations and to improved Mortalin‐targeting antitumor compounds.  相似文献   

11.
12.

Aims

Dobutamine is cytoprotective when applied before a subsequent stress. However, the underlying molecular mechanism is unknown. Dobutamine also inhibits nuclear factor (NF)-κB in human T lymphocytes. Other inhibitors of NF-κB induce a so-called heat shock response. We hypothesized that dobutamine mediates protection from apoptotic cell death by the induction of a heat shock response.

Main methods

Jurkat T lymphoma cells were preincubated with dobutamine (0.1, 0.5 mM) before the induction of apoptosis (staurosporine, 2 μM). DNA-binding of heat shock factor (HSF)-1 was analyzed by electrophoretic mobility shift assay, mRNA-expression of heat shock protein (hsp)70 and hsp90 by Northern Blot, activity of caspase-3 by fluorogenic caspase activity assay and cleavage of pro-caspase-3 by Western Blot. Apoptosis was assessed by flow cytometry after annexin V-fluorescein isothiocyanate staining. Hsp70 and hsp90 were inhibited using N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam and 17-allylamino-17-demethoxygeldana-mycin, respectively. All data are given as median and 25/75% percentile.

Key findings

Pre-incubation with dobutamine inhibited staurosporine-induced annexin V-fluorescence (28 [20–32] % vs. 12 [9–15] % for dobutamine 0.1 mM and 7 [5–12] % for dobutamine 0.5 mM, p < 0.001), cleavage of pro-caspase-3 as well as caspase-3-like activity (0.46 [0.40–0.48] vs. 0.32 [0.27–0.39] for Dobutamine 0.1 mM and 0.20 [0.19–0.23] for Dobutamine 0.5 mM, p < 0.01). Dobutamine induced DNA-binding of HSF-1 and mRNA-expression of hsp70 and hsp90. While inhibition of Hsp90 had no effect, inhibition of Hsp70 increased the number of annexin V-positive cells (33 [32–36] % vs. 18 [16–24] %) and caspase-3-like activity (0.21 [0.19–0.23] vs. 0.16 [0.13–0.17], p < 0.05).

Significance

Dobutamine protects from apoptotic cell death via the induction of Hsp70.  相似文献   

13.
Rapamycin inhibits the activity of the target of rapamycin (TOR)-dependent signaling pathway, which has been characterized as one dedicated to translational regulation through modulating cap-dependent translation, involving eIF4E binding protein (eIF4E-BP) or 4E-BP. Results show that rapamycin strongly inhibits global translation in Drosophila cells. However, Hsp70 mRNA translation is virtually unaffected by rapamycin treatment, whereas Hsp90 mRNA translation is strongly inhibited, at normal growth temperature. Intriguingly, during heat shock Hsp90 mRNA becomes significantly less sensitive to rapamycin-mediated inhibition, suggesting the pathway for Hsp90 mRNA translation is altered during heat shock. Reporter mRNAs containing the Hsp90 or Hsp70 mRNAs’ 5′ untranslated region recapitulate these rapamycin-dependent translational characteristics, indicating this region regulates rapamycin-dependent translational sensitivity as well as heat shock preferential translation. Surprisingly, rapamycin-mediated inhibition of Hsp90 mRNA translation at normal growth temperature is not caused by 4E-BP-mediated inhibition of cap-dependent translation. Indeed, no evidence for rapamycin-mediated impaired eIF4E function is observed. These results support the proposal that preferential translation of different Hsp mRNA utilizes distinct translation mechanisms, even within a single species.  相似文献   

14.
Sumioka I  Matsura T  Kai M  Yamada K 《Life sciences》2004,74(20):2551-2561
The aim of the present study was to assess the contribution of the level of expression of heat shock protein 25 (HSP25), 60 (HSP60), 70 (HSC70) and 70i (HSP70i) in mouse livers after a lethal dose of acetaminophen (APAP) to their survival. We examined changes in survival ratio, plasma APAP level and alanine aminotransferase (ALT) activity, and hepatic reduced glutathione (GSH), HSP25, HSP60, HSC70 and HSP70i levels following treatment of mice with APAP (500 mg/kg, p.o.). The plasma APAP level increased rapidly, and reached a maximum 0.5 h after APAP treatment. Hepatic GSH decreased rapidly, and was almost completely depleted 1 h after APAP treatment. Plasma ALT activity, an index of liver injury, significantly increased from 3 h onwards after APAP treatment. The survival ratios 9 h, 24 h and 48 h after APAP treatment were 96%, 38% and 36%, respectively. We found a remarkable difference in the patterns of hepatic HSP25 and HSP70i induction in mice that survived after APAP treatment. HSP70i levels increased from 1 h onwards after APAP treatment in a time-dependent manner, and reached a maximum at 9 h. In contrast, HSP25 could be detected just 24 h after APAP treatment, and maximal accumulation was observed at 48 h. Other HSPs examined were unchanged. Notably, the survival ratio dropped by only 2% after HSP25 expression. Recently, a novel role for HSP25 as an anti-inflammatory factor was suggested. We have already shown that 48-h treatment with APAP induces severe centrilobular necrosis with inflammatory cell infiltration in mouse livers. Taken together, the level of expression of hepatic HSP25 may be a crucial determinant of the fate of mice exposed to APAP insult.  相似文献   

15.
16.
热休克反应中小鼠心脏HSP70表达的免疫组织化学研究   总被引:5,自引:0,他引:5  
用免疫组织化学方法研究了小鼠心脏在不同温度(40、41、44、46℃)热休克处理后,各恢复期(2、4、8、12、24小时)HSP70的表达。结果表明,(1)44、46℃热处理能诱导心肌细胞合成HSP70,以46℃为多(P<0.01),且于恢复期4-8小时为合成高峰(P<0.01)。(2)阳性免疫反应定位于心肌细胞质中,核呈阴性反应。提示了心脏有较强的耐热能力。  相似文献   

17.
18.
Kim SA  Chang S  Yoon JH  Ahn SG 《FEBS letters》2008,582(5):734-740
Heat shock protein 40 (Hsp40) functions as a co-chaperone of mammalian Heat shock protein 70 (Hsp70) and facilitates the ATPase activity of Hsp70, and also promotes the cellular protein folding and renaturation of misfolded proteins. In an effort to assess the effects of Hsp40, we generated TAT-fused Hsp40 (TAT-Hsp40). The cells were transduced with TAT-Hsp40 and exposed to H(2)O(2). We demonstrated that the TAT-Hsp40-transduced cells were more resistant to cellular cytotoxicity and cell death. In particular, the degradation of Hsp70 was significantly reduced in TAT-Hsp40-containing cells as a consequence of reduced ubiquitin-proteasome activity after oxidative injury. These data support the notion that Hsp40 may confer resistance to oxidative stress via the prevention of proteasome activity.  相似文献   

19.
Molecular evolution of the HSP70 multigene family   总被引:38,自引:0,他引:38  
Eukaryotic genomes encode multiple 70-kDa heat-shock proteins (HSP70s). The Saccharomyces cerevisiae HSP70 family is comprised of eight members. Here we present the nucleotide sequence of the SSA3 and SSB2 genes, completing the nucleotide sequence data for the yeast HSP70 family. We have analyzed these yeast sequences as well as 29 HSP70s from 24 additional eukaryotic and prokaryotic species. Comparison of the sequences demonstrates the extreme conservation of HSP70s; proteins from the most distantly related species share at least 45% identity and more than one-sixth of the amino acids are identical in the aligned region (567 amino acids) among all proteins analyzed. Phylogenetic trees constructed by two independent methods indicate that ancient molecular and cellular events have given rise to at least four monophyletic groups of eukaryotic HSP70 proteins. Each group of evolutionarily similar HSP70s shares a common intracellular localization and is presumed to be comprised of functional homologues; these include heat-shock proteins of the cytoplasm, endoplasmic reticulum, mitochondria, and chloroplasts. HSP70s localized in mitochondria and plastids are most similar to the DnaK HSP70 homologues in purple bacteria and cyanobacteria, respectively, which is consistent with the proposed prokaryotic origin of these organelles. The analyses indicate that the major eukaryotic HSP70 groups arose prior to the divergence of the earliest eukaryotes, roughly 2 billion years ago. In some cases, as exemplified by the SSA genes encoding the cytoplasmic HSP70s of S. cerevisiae, more recent duplication events have given rise to subfamilies within the major groups. The S. cerevisiae SSB proteins comprise a unique subfamily not identified in other species to date. This subfamily appears to have resulted from an ancient gene duplication that occurred at approximately the same time as the origin of the major eukaryotic HSP70 groups. Correspondence to: E.A. Craig  相似文献   

20.
热休克蛋白(heat shock protein70,HSP70)是HSP家族中重要成员,在生物细胞中含量最高,可诱导性最强,具有保护细胞免受刺激损伤,促进受损细胞修复及抗炎、抗凋亡、耐受缺血/缺氧损伤等多种生物学功能。许多研究发现在心肌组织中HSP70表达升高可减轻心肌细胞损伤程度,利于损伤心肌细胞的恢复,在预防和延缓心血管疾病中起到重要作用。因此,热休克蛋白70诱导剂在心血管疾病的防治中具有潜在的临床价值。本文主要对HSP70在心血管疾病中的保护作用进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号