首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysosomal enzymes beta-glucuronidase and alpha-L-fucosidase and mannose-6-phosphate inhibited the phosphorylation of the lysosomal enzyme binding receptor protein prepared from monkey brain. Inhibition of both serine and tyrosine phosphorylation was observed. A non-lysosomal glycoprotein enzyme butyrylcholinesterase, mannose or glucose did not inhibit phosphorylation. Tyrosine phosphorylation of histone by the receptor protein was also inhibited by the lysosomal enzymes and mannose-6-phosphate.  相似文献   

2.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

3.
Mannose 6-phosphate is an important recognition site involved in transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes. The current study is the first demonstration of functional mannose phosphate receptors in macrophages. The receptor appears to be similar in many respects to that expressed in fibroblasts. Binding at 4 degrees C of a mannose-6-P-containing ligand, alpha-mannosidase from Dictyostelium discoideum, was specific and saturable (KD = 1.6 nM). In the presence of permeabilizing agents (saponin and digitonin), macrophage mannose-6-P receptors gave a distribution of 15-20% on the surface and 80-85% inside. Uptake studies gave a Kuptake value of 4.9 nM. Mannose-6-P, Hansenula holstii phosphomannan, and fructose 1-phosphate were effective inhibitors of alpha-mannosidase uptake. Inhibitors of mannose uptake, such as beta-glucuronidase, mannose-bovine serum albumin, fucose-bovine serum albumin, or mannan had no effect on alpha-mannosidase uptake. Likewise, an inhibitor (fucoidin) of the macrophage receptor which recognizes negatively charged proteins did not inhibit alpha-mannosidase uptake. Uptake was linear over 90 min and inhibited by chloroquine, suggesting that surface receptors recycle. These data demonstrate that macrophages contain receptors which specifically recognize mannose-6-P units and are distinct from the well characterized mannose receptors. The finding that the mannose-6-P receptors play a role at the surface, together with the fact that most of the receptors are intracellular (similar to the mannose receptor) suggests that both carbohydrate receptors play a regulatory role at the surface and intracellularly in transport of lysosomal enzymes.  相似文献   

4.
Mannose-6-phosphate receptors (MPRs) have been identified in a wide range of species from humans to invertebrates such as molluscs. A characteristic of all MPRs is their common property to recognize mannose-6-phosphate residues that are labelling lysosomal enzymes and to mediate their targeting to lysosomes in mammalian cells by the corresponding receptor proteins. We present here the analysis of full-length sequences for MPR 46 from zebrafish (Danio rerio) and its functional analysis. This is the first non-mammalian MPR 46 to be characterised. The amino acid sequences of the zebrafish MPR 46 displays 70% similarity to the human MPR 46 protein. In particular, all essential cysteine residues, the transmembrane domain as well as the cytoplasmic tail residues harbouring the signals for endocytosis and Golgi-localizing, γ-ear-containing, ARF-binding protein (GGA)-mediated sorting at the trans-Golgi network, are highly conserved. The zebrafish MPR 46 has the arginine residue known to be essential for mannose-6-phosphate binding and other additional characteristic residues of the mannose-6-phosphate ligand-binding pocket. Like the mammalian MPR 46, zebrafish MPR 46 binds to the multimeric mannose-6-phosphate ligand phosphomannan and can rescue the missorting of lysosomal enzymes in mammalian MPR-deficient cells. The conserved C-terminal acidic dileucine motif (DxxLL) in the cytoplasmic domain of zebrafish MPR 46 essential for the interaction of the GGAs with the receptor domains interacts with the human GGA1-VHS domain. Interestingly, the serine residue suggested to regulate the interaction between the tail and the GGAs in a phosphorylation-dependent manner is substituted by a proline residue in fish. Electronic Supplementary Material Supplementary material is available for this article at . The zebrafish MPR 46 sequence data have been submitted to the GenBank database under accession no. DQ089037.  相似文献   

5.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

6.
Biogenesis of lysosomes depends in mammalian cells on the specific recognition and targeting of mannose 6-phosphate-containing lysosomal enzymes by two mannose 6-phosphate receptors (MPR46, MPR300), key components of the extensively studied receptor-mediated lysosomal sorting system in complex metazoans. In contrast, the biogenesis of lysosomes is poorly investigated in the less complex metazoan Drosophila melanogaster. We identified the novel type I transmembrane protein lysosomal enzyme receptor protein (LERP) with partial homology to the mammalian MPR300 encoded by Drosophila gene CG31072. LERP contains 5 lumenal repeats that share homology to the 15 lumenal repeats found in all identified MPR300. Four of the repeats display the P-lectin type pattern of conserved cysteine residues. However, the arginine residues identified to be essential for mannose 6-phosphate binding are not conserved. The recombinant LERP protein was expressed in mammalian cells and displayed an intracellular localization pattern similar to the mammalian MPR300. The LERP cytoplasmic domain shows highly conserved interactions with Drosophila and mammalian GGA adaptors known to mediate Golgi-endosome traffic of MPRs and other transmembrane cargo. Moreover, LERP rescues missorting of soluble lysosomal enzymes in MPR-deficient cells, giving strong evidence for a function that is equivalent to the mammalian counterpart. However, unlike the mammalian MPRs, LERP did not bind to the multimeric mannose 6-phosphate ligand phosphomannan. Thus ligand recognition by LERP does not depend on mannose 6-phosphate but may depend on a common feature present in mammalian lysosomal enzymes. Our data establish a potential important role for LERP in biogenesis of Drosophila lysosomes and suggest a GGA function also in the receptor-mediated lysosomal transport system in the fruit fly.  相似文献   

7.
Secretion of the lysosomal enzyme hexosaminidase induced by zymosan is inhibited by mannose and by high concentrations of mannose-6-phosphate and 2-deoxy-glucose but not by mannan. Secretion of hexosaminidase from cells storing previously endocytosed zymosan is unaffected by mannose. Exposure of the cells to mannose does not affect secretion caused by subsequent exposure to zymosan. These findings suggest a role for the mannose-glycoprotein receptor in initiation of lysosomal enzyme secretion by zymosan.  相似文献   

8.
The lysosomal enzyme binding protein (receptor protein) isolated from monkey brain was immobilised on Sepharose 4B and used to study the binding of brain lysosomal enzymes. The immobilised protein could bind \-D-glucosaminidase, α-D-mannosidase, α-L-fucosidase and2-D-glucuronidase. The bound enzymes could be eluted either at an acid pH of 4.5 or by mannose 6-phosphate but not by a number of other sugars tested. Binding could be abolished by prior treatment of the lysosomal enzymes with sodium periodate. Alkaline phosphatase treatment of the enzymes did not prevent the binding of the lysosomal enzymes to the column but decreased their affinity, as seen by a shift in their elution profile, when a gradient elution with mannose 6-phosphate was employed. These results suggested that an ‘uncovered’ phosphate on the carbohydrate moiety of the enzymes was not essential for binding but can enhance the binding affinity.  相似文献   

9.
Long - lasting synchrony of the division of enteric bacteria   总被引:5,自引:0,他引:5  
Recent finding of α-N-acetylglucosamine(1)phospho(6)mannose diesters in lysosomal enzymes suggested that formation of mannose 6-phosphate residues involves transfer of N-acetylglucosamine 1-phosphate to mannose. Using dephosphorylated β-hexosaminidase as acceptor and [β-32P]UDP-N-acetylglucosamine as donor for the phosphate group, phosphorylation of β-hexosaminidase by microsomes from rat liver, human placenta and human skin fibroblasts was achieved. The reaction was not affected by tunicamycin. Acid hydrolysis released mannose 6-[32P]phosphate from the phosphorylated β-hexosaminidase. Our results suggest that lysosomal enzymes are phosphorylated by transfer of N-acetylglucosamine 1-phosphate from UDP-N-acetylglucosamine. The transferase activity was deficient in fibroblasts from patients affected with l-cell disease. This deficiency is proposed to be the primary enzyme defect in l-cell disease.  相似文献   

10.
Yeom SJ  Kim YS  Lim YR  Jeong KW  Lee JY  Kim Y  Oh DK 《Biochimie》2011,93(10):1659-1667
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.  相似文献   

11.
Mannose 6-phosphate receptors carry newly synthesized lysosomal hydrolases from the trans-Golgi network to endosomes, then return to the trans-Golgi network for another round of enzyme delivery. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, interferes with the delivery of newly synthesized lysosomal enzymes to lysosomes. We used two independent assays of mannose 6-phosphate receptor trafficking to determine the precise step that is blocked by wortmannin. Using an assay that monitors resialylation of desialylated cell surface 300-kDa mannose 6-phosphate receptors, we found that receptor endocytosis and transport to the trans-Golgi network were not inhibited by 2 microM wortmannin. In addition, this concentration of drug had no effect on the transport of the mannose 6-phosphate receptor from late endosomes to the trans-Golgi network using a system that reconstitutes this transport process in cell extracts. Under the same conditions, wortmannin significantly inhibited the generation of mature cathepsin D. In addition, the structurally unrelated phosphatidylinositol 3-kinase inhibitor, LY294002, was also without effect when added to in vitro endosome-trans-Golgi network transport reactions. These experiments demonstrate that the interruption in lysosomal enzyme targeting is most likely due to a wortmannin-sensitive process required for the export of these receptors from the trans-Golgi network, consistent with the established role of phosphatidylinositol 3-kinase in the equivalent transport process in Saccharomyces cerevisiae.  相似文献   

12.
alpha-N-Acetylglucosaminidase (EC 3.2.1.50) is a lysosomal enzyme that is deficient in the genetic disorder Sanfilippo syndrome type B. To study the human enzyme, we expressed its cDNA in Lec1 mutant Chinese hamster ovary (CHO) cells, which do not synthesize complex oligosaccharides. The enzyme was purified to apparent homogeneity from culture medium by chromatography on concanavalin A-Sepharose, Poros 20-heparin, and aminooctyl-agarose. The purified enzyme migrated as a single band of 83 kDa on SDS-PAGE and as two peaks corresponding to monomeric and dimeric forms on Sephacryl-300. It had an apparent K(m) of 0.22 mM toward 4-methylumbelliferyl-alpha-N-acetylglucosaminide and was competitively inhibited by two potential transition analogs, 2-acetamido-1,2-dideoxynojirimycin (K(i) = 0.45 microM) and 6-acetamido-6-deoxycastanospermine (K(i) = 0.087 microM). Activity was also inhibited by mercurials but not by N-ethylmaleimide or iodoacetamide, suggesting the presence of essential sulfhydryl residues that are buried. The purified enzyme preparation corrected the abnormal [(35)S]glycosaminoglycan catabolism of Sanfilippo B fibroblasts in a mannose 6-phosphate-inhibitable manner, but its effectiveness was surprisingly low. Metabolic labeling experiments showed that the recombinant alpha-N-acetylglucosaminidase secreted by CHO cells had only a trace of mannose 6-phosphate, probably derived from contaminating endogenous CHO enzyme. This contrasts with the presence of mannose 6-phosphate on naturally occurring alpha-N-acetylglucosaminidase secreted by diploid human fibroblasts and on recombinant human alpha-l-iduronidase secreted by the same CHO cells. Thus contrary to current belief, overexpressing CHO cells do not necessarily secrete recombinant lysosomal enzyme with the mannose 6-phosphate-targeting signal; this finding has implications for the preparation of such enzymes for therapeutic purposes.  相似文献   

13.
Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity-purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of this compartment causes the formation of soluble and particulate enzyme aggregates. A significant proportion of these enzyme aggregates are unable to bind the M6PR and are selectively secreted via the constitutive secretory pathway, while endogenous lysosomal enzymes bind the M6PRs and are transported to lysosomes.  相似文献   

14.
Mucopolysaccharidosis type IIIB (MPS-IIIB, Sanfilippo type B Syndrome) is a heterosomal, recessive lysosomal storage disorder resulting from a deficiency of [alpha]-N-acetylglucosaminidase (NAGLU). To characterize this enzyme further and evaluate its potential for enzyme replacement studies we expressed the NAGLU-encoding cDNA in Chinese hamster ovary cells (CHO-K1 cells) and purified the recombinant enzyme from the medium of stably transfected cells by a two-step affinity chromatography. Two isoforms of recombinant NAGLU with apparent molecular weights of 89 and 79 kDa were purified and shown to differ in their glycosylation pattern. The catalytic parameters of both forms of the recombinant enzyme were indistinguishable from each other and similar to those of NAGLU purified from various tissues. However, compared to other recombinant lysosomal enzymes expressed from CHO-K1 cells, the mannose-6-phosphate receptor mediated uptake of the secreted form of recombinant NAGLU into cultured skin fibroblasts was considerably reduced. A small amount of phosphorylated NAGLU present in purified enzyme preparations was shown to be endocytosed by MPS-IIIB fibroblasts via the mannose-6-phosphate receptor-mediated pathway and transported to the lysosomes, where they corrected the storage phenotype. Direct metabolic labeling experiments with Na(2) (32)PO(4) confirmed that the specific phosphorylation of recombinant NAGLU secreted from transfected CHO cells is significantly lower when compared with a control lysosomal enzyme. These results suggest that the use of secreted NAGLU in future enzyme and gene replacement therapy protocols will be severely limited due to its small degree of mannose-6-phosphorylation.  相似文献   

15.
Five healthy related individuals in 3 generations of a Lebanese family have been found to have highly elevated plasma lysosomal enzyme levels inherited as a dominant Mendelian trait. The same enzymes in other extracellular fluids were within normal limits. While the pattern and extent of plasma enzyme elevation was similar to that found in mucolipidoses II and III, the physicochemical properties of the elevated enzymes were different from those of both control and I-cell disease plasma. Secretion of lysosomal hydrolases into cell media by fibroblasts from one of the individuals was increased two to seven times more than that from controls. The results suggest faulty recognition between lysosomal hydrolases and mannose-6-phosphate receptors. This could be caused by a defect either in the phosphodiesterase that normally uncovers mannose-6-phosphate hydrolase markers or in the mannose-6-phosphate receptor itself.  相似文献   

16.
The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/MPR) is a type I glycoprotein that mediates both the intracellular sorting of lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) residues to the lysosome and the bioavailability of IGF-II. The extracytoplasmic region of the IGF-II/MPR contains 15 repeating domains; the two carbohydrate recognition domains (CRDs) have been localized to domains 1-3 and 7-9, and the high-affinity IGF-II binding site maps to domain 11. To characterize the carbohydrate binding properties of the IGF-II/MPR, regions of the receptor encompassing the individual CRDs were produced in a baculovirus expression system. Characterization of the recombinant proteins revealed that the pH optimum for carbohydrate binding is significantly more acidic for the carboxyl-terminal CRD than for the amino-terminal CRD (i.e., pH 6.4-6.5 vs 6.9). Equilibrium binding studies demonstrated that the two CRDs exhibit a similar affinity for Man-6-P. Furthermore, substitution of the conserved arginine residue in domain 3 (R435) or in domain 9 (R1334) with alanine resulted in a similar >1000-fold decrease in the affinity for the lysosomal enzyme, beta-glucuronidase. In contrast, the two CRDs differ dramatically in their ability to recognize the distinctive modifications (i.e., mannose 6-sulfate and Man-6-P methyl ester) found on Dictyostelium discoideum lysosomal enzymes: the amino-terminal CRD binds mannose 6-sulfate and Man-6-P methyl ester with a 14-55-fold higher affinity than the carboxyl-terminal CRD. Taken together, these results demonstrate that the IGF-II/MPR contains two functionally distinct CRDs.  相似文献   

17.
Enzyme replacement therapy for lysosomal storage disorders depends on efficient uptake of recombinant enzyme into the tissues of patients. This uptake is mediated by oligosaccharide receptors including the cation-independent mannose 6-phosphate receptor and the mannose receptor. We have sought to exploit alternative receptor systems that are independent of glycosylation but allow for efficient delivery to the lysosome. Fusions of the human lysosomal enzymes alpha-l-iduronidase or acid alpha-glucosidase with the receptor-associated protein were efficiently endocytosed by lysosomal storage disorder patient fibroblasts, rat C6 glioma cells, mouse C2C12 myoblasts, and recombinant Chinese hamster ovary cells expressing individual members of the low-density lipoprotein receptor family. Uptake of the fusions exceeded that of phosphorylated enzyme in all cases, often by an order of magnitude or greater. Uptake was specifically mediated by members of the low-density lipoprotein receptor protein family and was followed by delivery of the fusions to the lysosome. The advantages of the lipoprotein receptor system over oligosaccharide receptor systems include more efficient cellular delivery and the potential for transcytosis of ligands across tight endothelia, including the blood-brain barrier.  相似文献   

18.
The intracellular transport of newly synthesized lysosomal hydrolases to lysosomes requires the presence of one or more phosphorylated high mannose-type oligosaccharides per enzyme. A receptor that mediates mannose-6-PO4-specific uptake of lysosomal enzymes is expressed on the surface of fibroblasts and presumably accounts for the intracellular transport of newly synthesized enzymes to the lysosome. In this study, we examined the internalization of lysosomal enzyme-derived phosphorylated oligosaccharides by cultured human fibroblasts. Oligosaccharides of known specific activity bearing a single phosphate in monoester linkage were internalized with Kuptake of 3.2 X 10(-7) M, whereas oligosaccharides bearing two phosphates in monoester linkage were internalized with a Kuptake of 3.9 X 10(-8) M. Thus, phosphorylated high mannose-type oligosaccharides appear to be the minimal structure required for recognition and uptake by the fibroblast receptor. The finding that the Kuptake for monophosphorylated oligosaccharides is 100-fold less than the reported Ki for mannose-6-phosphate indicates that the fibroblast phosphomannosyl receptor contains a binding site that recognizes features of the oligosaccharide in addition to mannose-6-phosphate.  相似文献   

19.
Doo-Byoung Oh 《BMB reports》2015,48(8):438-444
Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]  相似文献   

20.
Carbohydrate recognition by amyloid P component from human serum has been investigated by binding experiments using several glycosaminoglycans, polysaccharides and a series of structurally defined neoglycolipids and natural glycolipids. Two novel classes of carbohydrate ligands have been identified. The first is 6-phosphorylated mannose as found on lysosomal hydrolases, and the second is the 3-sulphated saccharides galactose, N-acetyl-galactosamine and glucuronic acid as found on sulphatide and other acidic glycolipids that occur in neural or kidney tissues or on subpopulations of lymphocytes. Binding to mannose-6-phosphate containing molecules and inhibition of binding by free mannose-6-phosphate and fructose-1-phosphate are features shared with mannose-6-phosphate receptors involved in trafficking of lysosomal enzymes. However, only amyloid P binding is inhibited by galactose-6-phosphate, mannose-1-phosphate and glucose-6-phosphate. These findings strengthen the possibility that amyloid P protein has a central role in amyloidogenic processes: first in formation of focal concentrations of lysosomal enzymes including proteases that generate fibril-forming peptides from amyloidogenic proteins, and second in formation of multicomponent complexes that include sulphoglycolipids as well as glycosaminoglycans. The evidence that binding to all of the acidic ligands involves the same polypeptide domain on amyloid P protein, and inhibition data using diffusible, phosphorylated monosaccharides, is potentially important leads to novel drug designs aimed at preventing or even reversing amyloid deposition processes without interference with essential lysosomal trafficking pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号